首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this contribution, we present a highly selective chromium ion (Cr3+)-induced aggregation of citrate-capped silver nanoparticles, which could be applied for the imaging of the distribution of Cr3+ in cells. It was found that selective aggregation of citrate-capped silver nanoparticles occurs at room temperature in the presence of Cr3+ in aqueous medium of pH 6.8, resulting in color change from yellow to pink in 10 min and enhanced localized surface plasmon resonance (LSPR) scattering signals. Tenfold of other metal ions including Al3+, Ca2+, Co2+, Cu2+, Fe2+, Fe3+, Hg2+, La3+, Mg2+, Ni2+, Pb2+, Tb3+ and Zn2+ had no response. Mechanism analysis showed that the aggregation is mainly dependent on the chelation of Cr3+ ion with the citrate ion capped on silver nanoparticles, forming crosslinking aggregates of silver nanoparticles. With the Cr3+-induced enhancement of LSPR scattering signals, Cr3+ in cytoplasm of human bone marrow neuroblastoma cells could be imaged with dark-field light scattering imaging technique.  相似文献   

2.
A new tetradentate dihydrogen perchlorate macrocyclic ligand (2,4,9,11-tetraphenyl-1,5,8,12-tetraazacyclotetradeca-1,4,8,11-tetraene dihydrogen perchlorate) was prepared and characterised. The macrocycle behaves as a selective chelating ion-exchanger for some metal ions. The polystyrene-based membrane electrode is found to exhibit quite promising selectivity for Cr3+ ions. It can be used to estimate chromium concentrations in the range 3.16x 10(-6)-1.00x10(-1) M with a near-Nernstian slope of 17.5 mV per decade of concentration between pH 3.0 to 6.5. The electrode is found to possess a fast response time of 15 s and was used over a period of three months with good reproducibility (s = +/- 0.3 mV). The selectivity coefficient values for mono-, di- and trivalent cations indicate excellent selectivity for Cr3+ ions over a large number of other cations. Anions such as Cl- and SO4(2-) do not interfere and the electrode also works satisfactorily in a mixed organic-water solution. The sensor has been used as an indicator electrode for the potentiometric titration of Cr3+ with EDTA. The practical utility of the membrane sensor has also been demonstrated in solutions contaminated with detergents (CTAB and SDS). Above all, the membrane sensor has been very successfully used to determine Cr3+ in some foods.  相似文献   

3.
A FRET-based fluorescence probe was developed for selective detection of H2S in aqueous buffer and inside living cells. For this probe, the FRET probe could be cleaved by H2S, and the fluorescence of FRET donor is released. The probe is highly selective to H2S over other biologically relevant species to give color change for naked eye observation. Confocal imaging indicated that the probe could monitor intracellular H2S level changes.  相似文献   

4.
5.
Hassan SS  Abbas MN  Moustafa GA 《Talanta》1996,43(5):797-804
A novel potentiometric Cr(6+) PVC matrix membrane sensor incorporating nickel tris(1,10-bathophenanthroline) hydrogen chromate as an electroactive material and 2-nitrophenyl phenyl ether as solvent mediator is described. In a phosphate buffer solution of pH 5, the sensor displays a rapid and linear response for Cr(6-) over the concentration range 2 x 10(-2)-8 x 10(-6) M with an anionic slope of 55.5 +/- 0.2 mV decade(-1) and a detection limit of the order of 0.4 microg ml(-1). The sensor is used for sequential determination of Cr(6+) and Cr(3+) by direct monitoring of Cr(6+) followed by oxidation of Cr(3+) and measurement of the total chromium. The average recoveries of Cr(3+) and Cr(6+) at concentration levels of 0.5-50 microg ml(-1) are 98.1 +/- 0.4% and 99.1 +/- 0.4% respectively. Redox and precipitation titrations involving Cr(6+) as a titrant are monitored with the sensor. Cr(3+) and/or Cr(6+) in wastewaters of some industries (e.g., leather tanning, electroplating, aluminum painting) and the chromium contents of some alloys and refractory bricks are assessed. The results agree fairly well with data obtained using the standard diphenylcarbazide spectrophotometric method.  相似文献   

6.
7.
We present the synthesis, properties, and biological applications of Coppersensor-1 (CS1), a new water-soluble, turn-on fluorescent sensor for intracellular imaging of copper in living biological samples. CS1 utilizes a BODIPY reporter and thioether-rich receptor to provide high selectivity and sensitivity for Cu+ over other biologically relevant metal ions, including Cu2+, in aqueous solution. This BODIPY-based probe is the first Cu+-responsive sensor with visible excitation and emission profiles and gives a 10-fold turn-on response for detecting this ion. Confocal microscopy experiments further establish that CS1 is membrane-permeable and can successfully monitor intracellular Cu+ levels within living cells.  相似文献   

8.
A simple PET fluorescence sensor (BDA) for Zn2+ that utilizes 1,3,5,7-tetramethyl-boron dipyrromethene as a reporting group and di(2-picolyl)amine as a chelator for Zn2+ has been synthesized and characterized. BDA has an excitation (491 nm) and emission wavelength (509 nm) in the visible range. The fluorescence quantum yields of the zinc-free and zinc-bound states of BDA are 0.077 and 0.857, respectively. With a low pKa of 2.1 +/- 0.1, BDA has the advantage of less sensitivity to pH than fluorescein-based Zn2+ sensors, and the fluorescence emission of zinc-binding is pH-independent in the range of pH 3-10. Under physiological conditions, metal ions such as Na+, K+, Ca2+, Mg2+, Mn2+ and Fe2+ have little interference. The apparent dissociation constant (Kd) is 1.0 +/- 0.1 nM. Using fluorescence microscopy, the sensor is shown to be capable of imaging intracellular Zn2+ changes.  相似文献   

9.
The accurate intracellular imaging of metal ions requires an exquisite site-specific activation of metal-ion sensors, for which the pervasive epigenetic regulation strategy can serve as an ideal alternative thanks to its orthogonal control feature and endogenous cell/tissue-specific expression pattern. Herein, a simple yet versatile demethylation strategy was proposed for on-site repairing-to-activating the metal-ion-targeting DNAzyme and for achieving the accurate site-specific imaging of metal ions in live cells. This endogenous epigenetic demethylation-regulating DNAzyme system was prepared by modifying the DNAzyme with an m6A methylation group that incapacitates the DNAzyme probe, thus eliminating possible off-site signal leakage, while the cell-specific demethylase-mediated removal of methylation modification could efficiently restore the initial catalytic DNAzyme for sensing metal ions, thus allowing a high-contrast bioimaging in live cells. This epigenetic repair-to-activate DNAzyme strategy may facilitate the robust visualization of disease-specific biomarkers for in-depth exploration of their biological functions.

A simple yet versatile demethylation strategy is proposed for an on-site repairing-to-activating metal-ion-targeting DNAzyme and for achieving the highly reliable site-specific imaging of metal ions in live cells.  相似文献   

10.
11.
A series of nine luminescent cyclometalated octahedral iridium(III) tris(2-phenylpyridine) complexes has been synthesized, functionalized with three different amino acids (glycine, alanine, and lysine), on one, two, or all three of the phenylpyridine ligands. All starting complexes and final compounds have been fully analyzed by one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy, and photophysical data have been obtained for all the mono-, bis-, and tri- substituted iridium(III) complexes. Cellular uptake and localization have been studied with flow cytometry and confocal microscopy, respectively. Confocal experiments demonstrate that all nine substituted iridium(III) complexes show variable uptake in the tumor cells. The monosubstituted iridium(III) complexes give the highest cellular uptake, and the series substituted with lysines shows the highest toxicity. This systematic study of amino acid-functionalized Ir(ppy)(3) complexes provides guidelines for further functionalization and possible implementation of luminescent iridium complexes, for example, in (automated) peptide synthesis or biomarker specific targeting.  相似文献   

12.
A new phenothiazine-based sensor PHE-Ad for monitoring Hg2+ has been designed and synthesized based on the intramolecular charge transfer (ICT) mechanism. The probes were characterized by FTIR, 1H NMR, and HRMS, and their optical properties were detected by UV and FL. It's showed the probes detection of Hg2+ compared to other metal ions (Mg2+, Cu2+, Hg2+, Ag+, Co2+, Cr3+, Al3+, Ni2+, Zn2+, Ca2+, Fe3+, Fe2+, K+, Na+, and Cd2+) based on the test results. Besides, the detection limits were determined to be 2.12 × 10−8 M through the standard curve plot. In addition, sensor PHE-Ad shows high selectivity and sensitivity for Hg2+ with a fast response in a suitable pH range. Furthermore, taking into account its good “turn-on” fluorescent sensing behavior and low cell cytotoxicity, PHE-Ad was successfully applied to detect and image Hg2+ in real water samples and living cells, which shows great potentials for application in environmental and biological systems.  相似文献   

13.
Potassium is the most abundant intracellular metal in the body, playing vital roles in regulating intracellular fluid volume, nutrient transport, and cell-to-cell communication through nerve and muscle contraction. On the other hand, aberrant alterations in K+ homeostasis contribute to a diverse array of diseases spanning cardiovascular and neurological disorders to diabetes to kidney disease to cancer. There is an unmet need for studies of K+ physiology and pathology owing to the large differences in intracellular versus extracellular K+ concentrations ([K+]intra = 150 mM, [K+]extra = 3–5 mM). With a relative dearth of methods to reliably measure dynamic changes in intracellular K+ in biological specimens that meet the dual challenges of low affinity and high selectivity for K+, particularly over Na+, currently available fluorescent K+ sensors are largely optimized with high-affinity receptors that are more amenable for extracellular K+ detection. We report the design, synthesis, and biological evaluation of Ratiometric Potassium Sensor 1 (RPS-1), a dual-fluorophore sensor that enables ratiometric fluorescence imaging of intracellular potassium in living systems. RPS-1 links a potassium-responsive fluorescent sensor fragment (PS525) with a low-affinity, high-selectivity crown ether receptor for K+ to a potassium-insensitive reference fluorophore (Coumarin 343) as an internal calibration standard through ester bonds. Upon intracellular delivery, esterase-directed cleavage splits these two dyes into separate fragments to enable ratiometric detection of K+. RPS-1 responds to K+ in aqueous buffer with high selectivity over competing metal ions and is sensitive to potassium ions at steady-state intracellular levels and can respond to decreases or increases from that basal set point. Moreover, RPS-1 was applied for comparative screening of K+ pools across a panel of different cancer cell lines, revealing elevations in basal intracellular K+ in metastatic breast cancer cell lines vs. normal breast cells. This work provides a unique chemical tool for the study of intracellular potassium dynamics and a starting point for the design of other ratiometric fluorescent sensors based on two-fluorophore approaches that do not rely on FRET or related energy transfer designs.

We report a dual-fluorophore approach for ratiometric fluorescent imaging of K+ levels in live cells. Intracellular esterases cleave RPS-1 to detach the K+-responsive fluorophore (PS525) from its internal standard (Coumarin 343).  相似文献   

14.
Wu Y  Jing H  Dong Z  Zhao Q  Wu H  Li F 《Inorganic chemistry》2011,50(16):7412-7420
In this work, a neutral iridium(III) complex [Ir(bt)(2)(acac)] (Hbt = 2-phenylbenzothiazole; Hacac = acetylacetone) has been realized as a Hg(II)-selective sensor through UV-vis absorption, phosphorescence emission, and electrochemical measurements and was further developed as a phosphorescent agent for monitoring intracellular Hg(II). Upon addition of Hg(II) to a solution of [Ir(bt)(2)(acac)], a noticeable spectral blue shift in both absorption and phosphorescent emission bands was measured. (1)H NMR spectroscopic titration experiments indicated that coordination of Hg(II) to the complex induces fast decomposition of [Ir(bt)(2)(acac)] to form a new complex, which is responsible for the significant variations in optical and electrochemical signals. Importantly, cell imaging experiments have shown that [Ir(bt)(2)(acac)] is membrane permeable and can be used to monitor the changes in Hg(II) levels within cells in a ratiometric phosphorescence mode.  相似文献   

15.
Treatment of [CrCl3(THF)3] with slightly more than 1 equiv of Li3(N3N) [(N3N)(3-) = ((Me3SiNCH2CH2)3N)(3-)] affords the triamidoamine complex [Cr(N3N)] (1) in 75% yield. 1 is oxidized by PhICl2, CuCl2, or AgCl to give the chromium(IV) complex [Cr(N3N)Cl] (2) in moderate yields. Alternatively, complex 2 is obtained directly from [CrCl3(THF)3] in 50% yield after treatment with 0.5 equiv of Li3(N3N). Both compounds are high-spin complexes bearing three and two unpaired electrons, respectively. Their molecular structures are described revealing a trigonal monopyramidal and trigonal bipyramidal coordination geometry of the chromium center, respectively.  相似文献   

16.
Summary Trisodium phosphate is recommended as a reagent for the microscopic detection of chromium (III). Sensitivity of the test is 6 of chromium (III) in a volume of 0.01 ml. Of particular importance is the fact that aluminum and iron (III) do not react with the reagent to form crystalline precipitates.
Zusammenfassung Tertiäres Natriumphosphat gibt mit Chrom(III)-Lösungen eine charakteristische Fällung, in der unter dem Mikroskop rechteckige Kristalle zu erkennen sind. Weder Aluminium noch Eisen(III) gibt mit diesem Reagens einen kristallinen Niederschlag. Die Reaktion gestattet den Nachweis von 6 Chrom in 0,01 ml Lösung. Auch Quecksilber(II) gibt charakteristische Kristalle.

Résumé On recommande le phosphate trisodique comme réactif pour la recherche microscopique du chrome-III. La sensibilité de l'essai est 6 de chrome-III dans un volume de 0,01 ml. Le fait que l'alumine et le fer-III ne se combinent pas avec le réactif pour former des précipités cristallins présente une importance particulière.


With 2 figures.  相似文献   

17.
A plasticized Cr3+ ion sensor by incorporating 2,3,8,9-tetraphenyl-1,4,7,10-tetraazacyclododeca-1,3,7,9-tetraene (TTCT) ionophore exhibits a good potentiometric response for Cr3+ over a wide concentration range (1.0 x 10(-6)-1.0 x 10(-1) M) with a slope of 19.5 mV per decade. The sensor response is stable for at least three months. Good selectivity for Cr3+ in comparison with alkali, alkaline earth, transition and heavy metal ions, and minimal interference are caused by Li+, Na+, K+, Co2+, Hg2+, Ca2+, Pb2+ and Zn2+ ions, which are known to interfere with other chromium membrane sensors. The TTCT-based electrode shows a fast response time (15 s), and can be used in aqueous solutions of pH 3-5.5. The proposed sensor was used for the potentiometric titration of Cr3+ with EDTA and for a direct potentiometric determination of Cr3+ content in environmental samples.  相似文献   

18.
19.
Chromium(III) mesityl complexes were synthesized by protonolysis of chromocene with 1,3-diisopropylimidazolium chloride or DBU hydrochloride, salt metathesis with MesMgBr, and single electron oxidation with iodine.  相似文献   

20.
Alkaline hexacyanoferrate(III) oxidation of freshly prepared solutions of CrIII (pH>12) at 27°C follows the rate law, Equation 1:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号