首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Time-resolved EPR spectra are reported for porphyrin-quinone-quinone and porphyrin-porphyrin-quinone triads obtained after photoexcitation in the nematic and soft glass phase of liquid crystals. Spin-polarized EPR spectra were observed for the triplet states of the porphyrin created by spin-selective intersystem crossing (ISC) from the excited singlet state and those of the charge-separated radical pair states (RP) generated by electron transfer (ET) processes. The EPR polarization patterns of the RP are discussed in terms of the favored decay channel of the photoexcited singlet state of the porphyrin donor. The decay pathway may either be singlet ET to the quinone(s) followed by singlet/triplet mixing to yield RPs with triplet character or triplet ET after ISC from the porphyrin singlet to the triplet state, or a superposition of both pathways. It is demonstrated that the nature of the linking bridge between donor and acceptor, i.e., aliphatic cyclohexylene or aromatic phenylene, significantly influences the ET mechanism and thus the polarization patterns of the RP spectra. Using liquid crystals, information about the orientation of the guest molecules in the liquid crystal matrix with respect to the long axes of the liquid crystal molecules can be obtained. In the porphyrin-porphyrin-quinone triads the energy and ET processes strongly depend on the type of metallation of the porphyrins, specifically, whether the distal, the vicinal or both porphyrins bear a zinc atom.  相似文献   

2.
An increase in the effective magnetic moment and in the widths of the EPR lines of crystals composed of complexes of chromium(III) oxalates with cations of spiropyrans under the action of crystallization water was revealed. It was established that the dehydration-rehydration of the samples is a reversible process. Upon dehydration of the crystals at a temperature above 35°C, the triplet magnetism of the molecules of the spiropyrans weakens, strengthening upon rehydration. The contributions from the chromium oxalate and from the thermally induced states of the spiropyran molecules to the magnetization were isolated. The energies of thermal activation of the triplet states of the spiropyran molecules were determined.  相似文献   

3.
A series of biradicals consisting of a C60 linked to two nitroxide addends have been studied by time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy. The series includes all four trans bisadducts and the equatorial isomer. After a visible laser pulse, the bisadducts in toluene liquid solution show chemically induced dynamic electron polarization (CIDEP) effects with a complex pattern of narrow lines in emission and enhanced absorption. From the knowledge of the sign of exchange interaction between the two nitroxide moieties, it was possible to account for the CIDEP effect in terms of an intramolecular triplet-triplet annihilation. A broad signal attributed to the quintet excited state was observed at short time delay after the laser pulse. The TR-EPR spectra recorded at low temperature in glassy matrix are assigned to an excited triplet state localized on the C60, with a small interaction with the spins of the two nitroxide fragments. The assignment is based on spectral simulation and analysis of the transient nutation frequency. The small exchange interaction between excited triplet C60 and nitroxide is shown to depend on the nature of the nitroxide addend.  相似文献   

4.
The triplet states of deoxybenzoin (DOB) and benzophenone (BP) molecules in randomly methylated β-cyclodextrin (CD) cavity are studied by time-resolved (TR) and pulse electron paramagnetic resonance (EPR). The observed TR EPR spectrum of DOB in β-CD at 30 K is close to the spectrum measured in polar solvent trifluoroethanol, revealing strong hydration by water molecules. At the same time, TR EPR spectrum of BP in β-CD corresponds to nonpolar surrounding of the CO-group. The electron spin relaxation times T 1 and T 2 of triplet BP at 30 K measured by pulse EPR are found to be different in β-CD compared to nonpolar toluene glass. The observed increase of T 2 by up to a factor of four in β-CD is caused by the lower vibration amplitude of CO-bond of BP due to the confinement in β-CD. The influence of β-CD with covalently attached nitroxide on the triplet states of DOB and BP is principally different: the excited triplet states could not be observed by TR EPR due to the efficient quenching of the excited states by nitroxide.  相似文献   

5.
The photocleavage of the CBr bond in bromoacetylnaphthalene is investigated by transient absorption and time resolved EPR spectroscopy. In the transient absorption of 2-bromo-2′-acetylnaphthalene, the absorption band observed at λmax ~440 nm is assigned to the triplet state of the parent molecule. After decay of the triplet absorption, a long lived absorption band is observed at λmax ~380 nm, which is assigned to naphthoylmethyl radical. The yield of this radical is not dependent on the concentration of oxygen even though the absorption band of the triplet state was quenched by addition of oxygen. Thus we conclude that the spin multiplicity of the precursor molecule is singlet. The CW time resolved EPR spectrum shows a typical E?/A CIDEP pattern of three hyperfine lines of the naphthoylmethyl radical. This result suggests some contribution from triplet precursor molecules. However, a careful analysis of the time profile of the CIDEP intensity observed by FT-EPR revealed that the polarization is generated from the radical pair mechanism (RPM) from the encountered pair of two free naphthoylmethyl radicals and the radical-triplet pair mechanism. RPM polarization by the geminate radical pair, formed by the Br atom and the naphthoylmethyl radical, is not observed. This fact indicates that large spin-orbit coupling (Δg and/or fast spin relaxation by g anisotropy) spoils the RPM polarization. The finding is in contrast to the recent observation of RPM polarization in the Cl cleavage reaction of 1-(chloromethyl)naphthalene.  相似文献   

6.
The time-resolved electron paramagnetic resonance (EPR) spectra are studied in the temperature range of 110–300 K for two mixed solutions of porphyrins, ZnTPP and H2TPP, in toluene and the stable free radical 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO). The EPR spectra and their kinetic behavior were studied for concentrations of TEMPO varied in the interval from 0.51 to 7.68 mM, while the porphyrin concentration was fixed as 1 mM. The EPR spectra of triplet-state porphyrins and free radicals manifest the chemically induced spin polarization. For the relatively short-lived radical-triplet pairs, with the perturbation theory up to the fourth order, the theoretical expressions are obtained for the triplet and radical spin polarization induced by the enhanced intersystem crossing (ISC) due to the interaction of excited singlet-state porphyrins with free radicals and by the triplet quenching by free radicals. The time-dependent EPR spectra of the triplets are simulated taking into account the spin-lattice relaxation. It is shown that the variation of the triplet EPR spectra shape, when the time of observation increases, arises from the spin-lattice relaxation kinetics. The kinetic behavior of the TEMPO EPR spectrum was simulated on the basis of the kinetic scheme suggested earlier in the literature. The triplet spin-lattice relaxation time, the rate of the ISC and the lifetime of the excited singlet state were estimated by fitting the kinetic curves for the triplet EPR spectra intensity. For the mixed porphyrin-TEMPO solutions, a possible set of the rate constants of important bimolecular processes were determined. For this set of parameters, it turns out that the spin polarization transfer has a smaller rate constant than the rate constant of the diffusion collisions of the triplet and radical. It appears that the rate constant of the ISC catalyzed by radicals is relatively high in the solutions close to the melting point of the solvent and in the soft-glassy state. In the triplet porphyrins the initial spin polarization induced by the spin-selective ISC was found to exceed the equilibrium spin polarization by up to two orders of magnitude.  相似文献   

7.
The reaction and spin dynamics of the photocleavage reaction of 2-chloro-2′-acetylnaphthalene were studied by time-resolved FT-EPR and transient absorption (TA) spectroscopy. The photocleavage reaction from both singlet and triplet states was observed by TA and EPR experiments, although the radical cleavage reaction in the excited triplet state is energetically unfavourable. This feature has been explained by the ionic cleavage reaction due to the electro-negativity of the chlorine atoms. The time-resolved FT-EPR spectra were similar to those observed in the bromine substituted compound, 2-BAN, reported in a previous paper. The origin of the electron spin polarization was assigned to the radical triplet pair mechanism (RTPM) and free radical pair mechanism (F-pair RPM) from analysis of the time profiles of the spin polarization.  相似文献   

8.
Time-resolved continuous wave EPR signals of two consecutive radical pairs are found in the linear response limit. Numerical simulations of the EPR observables visualize two characteristic features. First, there is a shift of a phase of quantum beats of the EPR line intensities of the secondary pairs. This phase shift originates from a certain time delay in a formation of the secondary pairs (due to time spent by electron spins in the primary radical pair state) and from the difference of the spin dynamics in the secondary and the primary pairs. This phase shift might be detected even in the cases when the primary radical pair has the very short lifetime and, as a result, the EPR spectrum of the primary pair cannot be detected directly. Second, for two consecutive radical pairs, there might be a pronounced non-equality of intensities of EPR lines at the EPR resonance frequencies of the secondary pairs. Indeed, in a case of two consecutive pairs there is the additional mechanism which induces the non-equality of the EPR line intensities: a polarization transfer from the primary to secondary pair and the change of a electron spin quantization axis when a primary radical pair transforms to a secondary radical pair. A possibility to detect experimentally these features of the EPR signals when studying consecutive charge separated states in photosynthetic reaction centers is discussed briefly.  相似文献   

9.
Properly prepared pulse sequences of microwave and radio frequency have been employed to investigate the effect of polarization transfer from the polarized photo excited triplet state of pentacene in p-terphenyl crystals to the surrounding protons in pulsed ENDOR experiments. The ENDOR signal, measured as the change of electron spin echo (ESE) amplitude, is affected by the mode of RF pulses. When B0 parallelx (the long molecular axis), the ESE amplitude of the high-field transition of the triplet state changes from the maximum positive to zero with a pi RF pulse, and to the maximum negative with a 2pi pulse, while that of the low-field transition changes from nearly zero to the maximum negative as the RF pulse width increases. The effect is attributed to the strong electron spin polarization produced in the creation of the photoexcited triplet state and the subsequent efficient electron- nuclear polarization transfer process.  相似文献   

10.

Time-resolved spectra, decay kinetics and polarization of the transient optical absorption induced by irradiation of additively colored BeO crystals with electron pulses have been studied. It has been established that the two bands at 3.8 and 4.3 v eV of the transient optical absorption are due to the transitions between triplet and singlet excited states of F -centres in BeO. The polarization of excited F -centres absorption is discussed on the basis of analysis of the splitting of singlet and triplet states in crystalline field of the C 3v symmetry.  相似文献   

11.
A fast magnetic field sweep (2.0 × 105 T s?1) is applied to probe the spin dynamics in the level anti-crossing (LAC) region of the photo-excited triplet states of pentacene-h 14 in p-terphenyl (PHPT) and pentacene-d 14 in p-terphenyl (PDPT) systems. From the pulsed zero-field FID (ZF FID) EPR measurements of the triplet signal at room temperature, the crossing is found to be a non-adiabatic passage at such a high jumping rate. Detailed examination of the initial population of the photo-excited triplet states of these two systems indicates that the non-adiabatic state mixing is the dominant mechanism for the polarization transfer (electron-nuclear spins) in the LAC region. The time dependent Schrödinger equation is applied to calculate the non-adiabatic transition probabilities, and to simulate the observed triplet population profiles with fast field sweeping.  相似文献   

12.
CIDEP signals of semireduced thionine radicals produced by reacting thionine triplets with aniline and halogenated anilines were measured by time resolved CW and pulsed FT EPR. For aniline as quencher, the polarization was emissive while for 4-Br- and 3-I-aniline a time dependent change in polarization from emissive to enhanced absorption was observed. For 4-I-aniline the signals were in enhanced absorption for all delay times. The time and concentration dependence of the signals was analysed in terms of a sequential double triplet mechanism: polarization of the thionine triplet due to selective population of the molecular triplet substates (classical ‘p-type’ triplet mechanism) and modification of this polarization by substate selective, heavy atom induced depopulation of triplet exciplexes (triplet contact radical pairs) formed as intermediates in the triplet quenching by electron transfer (‘d-type’ triplet mechanism). A quantitative theoretical treatment that combines the time-integrated solution of the stochastic Liouville equations for precursor triplet and triplet exciplex with the kinetic rate equation of the bimolecular quenching process is presented. The equations derived allow the extraction of two polarization enhancement factors, V d for the pure d-type and V pd for the combined p- and d-type triplet mechanism from the concentration dependence of the time dependent CIDEP signals. The CIDEP curves and the previously observed magnetic field and heavy atom effects on the free radical yield can be quantitatively simulated with a consistent set of kinetic parameters.  相似文献   

13.
A sketch is presented of the path that has led from Zavoisky’s pioneering experiments to modern investigations by electron paramagnetic resonance (EPR) of the phosphorescent (S = 1) triplet state of polyatomic molecules or ions. The group-theoretical method first introduced by Wigner in his analysis of the multiplets of atomic spectroscopy, likewise provides a key for understanding the zero-field splitting and selection rules for radiative decay of the phosphorescent triplet state. Examples to illustrate the progress made through EPR experiments are selected from three fields. (i) Conformational instability on excitation. Both the zero-field splitting and the electron spin density distribution provide unique fingerprints of a triplet state’s geometry — structural information of a kind that is nonexistent for singlet states! Illustrations are provided by benzene C6H6 and fullerene C60. (ii) The optical pumping cycle. The spin selectivity of singlet-to-triplet intersystem crossing and radiative decay of the individual spin components of the triplet state is discussed. In practice this selectivity is put to advantage by performing EPR on triplet states in zero-field by means of optical detection. In turn, such experiments have led to a detailed insight into the spin-orbit coupling mechanisms responsible for the spin selectivity of the above processes. The high sensitivity attainable with optical detection has recently culminated in EPR experiments on single molecules. (iii) Quantum interference. In a triplet state of low symmetry two of the spin sublevels may decay to the ground state by the emission of photons of a common polarization (i.e., out of plane for an aromatic hydrocarbon). In such a situation quantum interference between the two decay channels can be induced by an appropriate preparation of the excited state. An example is shown where flash-excitation in the singlet manifold followed by rapid intersystem crossing causes theS = 1 spin angular momentum to be created in a spin state which is not an eigenstate of the zero-field splitting tensor. This nonstationary character of the initial triplet state, which reflects the spin-orbit coupling pathway, is observed through the detection of a spontaneous microwave signal following the 25 ps laser flash.  相似文献   

14.

In undoped and Ce 3+ -doped LaCl 3 EPR has been detected in the X-ray luminescence (XL-EPR) in K-band (25 v GHz) at 1.5 v K. Two excited triplet states with different EPR parameters and spectral shapes could be separated, both triplet states have been attributed to "out-of-plane" self-trapped excitons (STE) in LaCl 3 . No EPR signals of V K centres (self-trapped holes) could be detected in undoped or Ce 3+ -doped LaCl 3 after X-irradiation at low temperatures. X-irradiation of undoped LaCl 3 creates also an EPR spectrum which can be tentatively attributed to F-type defects. The scintillation mechanism is discussed.  相似文献   

15.
Benzoquinone (BQ), deuterobenzoquinone (d4-BQ), and hydroquinone (BQH2) are investigated in ethylene glycol by means of direct detection fast time-resolved EPR spectroscopy after laser flash photolysis. The development of the magnetization as a function of time and magnetic field is obtained and analyzed in terms of the Bloch equations and hyperfine parameters. The signals are attributed to the semiquinones BQH(*) and d4-BQH(*). The presence of 1,2-dihydroxyethyl radicals during the photolysis of BQ and d(4)-BQ is verified. No alkyl radicals are observed in solutions of BQ with excess BQH2. Detailed analysis of the chemically induced dynamic electron polarization spectra with respect to their development in time shows that polarization patterns of the semiquinones can be traced back to a superposition of triplet mechanism and radical pair mechanism, the latter arising from geminate T-pairs. Hence, two independent pathways for polarization are assumed: reaction of triplet benzoquinone with ethylene glycol leads to the semiquinone and dihydroxyethyl radicals with all signals in emission, whereas the reaction of triplet BQ and BQH2 yields two semiquinones exhibiting both net emissive and multiplet emissive/absorptive intensity distributions.  相似文献   

16.
Angular correlations of the annihilation photons, Compton scattered by plastic scintillators and detected by means of NaI (T1) crystals, have been measured in order to test the possibility of deviations of the experimental results from the predictions of the quantum theory. In fact, Jauch and Bohm, starting with different motivations, both arrive at the possibility of a lower correlation ratio between the two orthogonal polarization states of the two photons than predicted by quantum theory. This in turn should give a lower azimuthal anisotropy in the angular correlations. Our experimental results compared with the theoretical predictions, after correction for finite geometry by means of a Montecarlo method, do not confirm quantum theory and exclude the hypotheses of Jauch and of Bohm. We are continuing the experiment in order to test wether the breakdown in the polarization correlation depends on the distance (spatial and/or temporal) between the two correlated scattering events, as suggested by Jauch. Paper A 34 presented at 3 rd Internat'l Conf. Positron Annihilation, Otaniemi, Finland (August 1973).  相似文献   

17.
The triplet sensitized photo-decomposition of azocumene into nitrogen and cumyl radicals is investigated by time resolved EPR and optical absorption spectroscopy. It is found that the cumyl radicals carry an initial spin polarization and are formed with a yield that depends on both the solution viscosity and the strength of an external magnetic field. The phenomenon is interpreted in terms of a depopulation-type triplet mechanism, i.e. a competition between decay into radicals and fast, triplet sublevel selective intersystem crossing (ISC) back to the azocumene ground state. Analysis of the data yields relative rate constants for the ISC processes and the cleavage reaction of triplet azocumene. The energetically lower zero field triplet substate is depopulated by ISC about seven times faster than the upper one and about two orders of magnitude faster than depopulation by cleavage occurs. Cleavage probably takes place on the nanosecond time scale, while the ISC must proceed on the picosecond scale, as at elevated viscosity it becomes faster than the rotational Brownian motion of the molecule.  相似文献   

18.
Photoinduced effects on the electron spin polarization (ESP) in the lowest excited triplet (T1) states of porphyrins (PORs) and phthalocyanines (PCs) have been observed with a two-color time-resolved (TR) electron paramagnetic resonance (EPR) technique in a glassy matrix at low temperatures. On single-color excitation with the wavelengths of the ground state absorptions of PORs and PCs, polarized EPR spectra due to the corresponding T1 state were observed. The polarization patterns match well with interpretation as anisotropic intersystem crossing (ISC) induced by the spinorbit coupling between the singlet excited (S1) and the triplet states. In contrast, two-color excitation led to a change of the phase of the T1 state polarization pattern to the opposite. The observed ESP in the T1 state resulting from the excitation to the upper triplet state (T n ) was interpreted in terms of anisotropic ISC between the T n and S1 states. From the analysis of the ESP, changes in the quantum yields of the reverse ISC processes were determined at different temperatures. The results could be best interpreted by the existence of thermal pathways with small activation energy in the relaxation processes.  相似文献   

19.
The origin of frequently observed “negative” (opposite phase) ENDOR lines in the low-frequency region of triplet state ENDOR spectra is explained in terms of microwave hole burning and RF modulation phenomena. From this, a new method of detecting burnt side holes in EPR spectra is derived which is based on cw ENDOR instrumentation. The method uses the modulation satellites that are induced by a longitudinal RF field component and appear around any EPR line, including burnt holes (“negative” lines). The longitudinal RF field was generated by a coil oriented parallel to the external field, but a longitudinal component of the RF field also exists in most conventional ENDOR spectrometers because of slight misalignments of the ENDOR coil generating the transversal RF field. The lines it induces in the low-frequency part of ENDOR spectra are generally considered as artifacts. It is shown, however, that RF induced modulation satellites provide valuable information concerning the lines distant from the spectral position in the EPR spectrum chosen for ENDOR observation. This allows one to record the pattern of side holes burnt by microwave saturation through forbidden transitions that carries information about ENDOR frequencies comparable to what can be extracted from ESEEM experiments. Such comparability is demonstrated for examples of nitrogen ENDOR of photoexcited triplet states of the primary donor in photosynthetic reaction centers and related compounds.  相似文献   

20.
Electron paramagnetic resonance searches of thermally excited multiplet states in macerals, exinite, vitrinite, and inertinite of Polish medium-rank coal (85.6 wt% C), were performed. Numerical analysis of lineshape indicates a multicomponent structure of the EPR spectra of macerals heated at 300 degrees and 650 degrees C. EPR spectra of exinite and vitrinite are a superposition of broad Gauss, broad Lorentz (Lorentz 1), and narrow Lorentz (Lorentz 3) lines. Two narrow Lorentz (Lorentz 2 and Lorentz 3) lines were observed in the resonance absorption curves of inertinite. The influence of the measuring temperature (100-300 K) on the EPR lines of the macerals was also studied. The experimentally obtained temperature dependence of the EPR line intensities were fitted by the theoretical functions characteristic for paramagnetic centers with ground doublet state (S = 12) and paramagnetic centers with thermally excited triplet (S = 1) and quadruplet (S = 32) states. Thermally excited multiplet states were found in exinite and vitrinite. Both paramagnetic centers with doublet ground state (S = 12) and paramagnetic centers with thermally excited states, probably quadruplet states (S = 32), exist in the group of paramagnetic centers of exinite and vitrinite with the broad Lorentz 1 lines. Intensities (I) of the broad Gauss and the narrow Lorentz 3 lines of exinite and vitrinite changes with temperature according to the Curie law (I = C/T). The existence of thermally excited multiplet states was not stated for inertinite. The two groups of paramagnetic centers of inertinite with Lorentz 2 and Lorentz 3 lines obey the Curie law. Copyright 2000 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号