首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular imprinting technology is an attractive approach of creating recognition sites in polymeric materials by using the templating approach found in many natural systems. These recognition sites have memory to the target molecule that enables selective recognition of the template species. Molecularly imprinted polymers (MIPs) have been used in a wide range of areas including separation and isolation, catalysis, chemical sensing, and drug delivery. This review aims at highlight the recent advances in the application of molecular imprinting technology for inorganic and small organic anion recognition in aqueous media.
Figure
The application of molecular imprinting technology for anion recognition in aqueous media  相似文献   

2.
A method based on reverse atom transfer radical polymerization (R-ATRP) and molecular crowding has been used for design and synthesis of monolithic molecularly imprinted polymers (MIPs) capable of recognizing ibuprofen (IBU). 4-Vinylpyridine (4-VP) was used as the functional monomer, and ethylene glycol dimethacrylate (EDMA) was the crosslinking monomer. Azobisisobutyronitrile (AIBN)–CuCl2N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA) was used as the initiating system. Compared with conventional radical polymerization-based IBU-MIPs, the imprinting effects of the obtained IBU-MIPs was enhanced, suggesting the merit of combination of reverse ATRP and molecular crowding. In addition, it was found that the polymerization time of the molecularly imprinted monolithic column, the amount of template, the degree of crosslinking, and the composition of mobile phase greatly affected retention of the template and the performance of molecular recognition .
Figure
Schematic representation of molecular imprinting under molecular crowding conditions in the presence of R-ATRP  相似文献   

3.
An application of plasma-induced grafting of polyethylene membranes with a thin layer of molecularly imprinted polymer (MIP) was presented. High-density polyethylene (HDPE) membranes, “Vyon,” were used as a substrate for plasma grafting modification. The herbicide atrazine, one of the most popular targets of the molecular imprinting, was chosen as a template. The parameters of the plasma treatment were optimized in order to achieve a good balance between polymerization and ablation processes. Modified HDPE membranes were characterized, and the presence of the grafted polymeric layer was confirmed based on the observed weight gain, pore size measurements, and infrared spectrometry. Since there was no significant change in the porosity of the modified membranes, it was assumed that only a thin layer of the polymer was introduced on the surface. The experiments on the re-binding of the template atrazine to the membranes modified with MIP and blank polymers were performed. HDPE membranes which were grafted with polymer using continuous plasma polymerization demonstrated the best result which was expressed in an imprinted factor equal to 3, suggesting that molecular imprinting was successfully achieved.
Figure
Atrazine and simazine adsorption by untreated HDPE membranes and membranes plasmagrafted with molecular imprinted polymer  相似文献   

4.
We have examined the specificity of electrosynthesized poly-o-phenylenediamine as a kind of material molecularly imprinted with metal chelates. Molecularly imprinted polymers (MIPs) were prepared in situ by an electrochemical method. The EDTA chelate complexes of Cu(II), Zn(II), Fe(III) and Cd(II) ions were used as templates of the MIPs deposited on a gold electrode of a quartz crystal microbalance (QCM). The binding ability and specificity of the MIPs were investigated via the frequency response of the QCM to the adsorption of the template chelates and their analogs. Linear relationships are observed between the frequency shift and the concentration of the template chelates over a typical range of ~10?6 to ~10?4?mol·L?1. The results reveal good binding specificity of such MIPs for their templates over structurally related analogs, but the selectivity coefficients are less significant than that for enantiomers. The results also suggest no significant correlation between binding specificity and the ionic (or atomic) radius of the investigated metal ions. The observed specificity is qualitatively attributed to the overall conformational difference of the metal-EDTA complexes resulting from their difference in both ionic radius and electronic structures.
Figure
Schematic Representation of the Molecular Imprinting Procedures. The metal ions chelate with EDTA to form metal-EDTA chelates as the template, then polymerization is initiated by an electrochemical method. After the polymerization, the templates are removed to create cavities in the polymer film which have binding ability and specificity to the templates.  相似文献   

5.
We have combined the molecular imprinting and the layer-by-layer assembly techniques to obtain molecularly imprint polymers (MIPs) for the electrochemical determination of p-nitrophenol (p-NPh). Silica microspheres functionalized with thiol groups and gold nanoparticles (Au-NPs) were assembled on a gold electrode surface layer by layer. The electrode was then immersed into a solution of pyrrole and p-NPh (the template), and electropolymerization led to the creation of a polymer-modified surface. After the removal of the silica spheres and the template, electrochemical impedance spectroscopy and differential pulse voltammetry (DPV) were employed to characterize the surface. The results demonstrated the successful fabrication of macroporous MIPs embedded with Au-NPs on the gold electrode. The effects of monomer concentration and scan rate on the performance of the electrode were optimized. Excellent recognition capacity is found for p-NPh over chemically similar species. The DPV peak current is linearly related to concentration of p-NPh in the 0.1 μM to 1.4 mM range, with a 0.1 μM limit of detection (at S/N?=?3).
Figure
Molecularly imprinted polymers (MIPs) and nanomaterials were combined to prepare a novel macroporous structured MIPs based electrochemical sensor for the investigation of an environmental pollutant, p-nitrophenol (p-NPh). The sensor exhibited a fast binding dynamics, good specific adsorption capacities, and high selective recognition to p-NPh.  相似文献   

6.
Thermal preparation of lysozyme-imprinted microspheres was firstly investigated by using biocompatible ionic liquid (IL) as a thermal stabilizer. The imprinted microspheres made with IL could obtain the good recognition ability to template protein, whereas the imprinted polymer synthesized in the absence of it had a similar adsorption capacity to the non-imprinted one. Furthermore, the preparation conditions of imprinted polymers (MIPs) including the content of IL, temperature of polymerization, and types of functional monomers and crosslinkers were systematically analyzed via circular dichroism spectrum and activity assay. The results illustrated that using hydroxyethyl acrylate as the functional monomer, ethylene glycol dimethacrylate as the crosslinker, 5 % IL as the stabilizer, and 75 °C as the reaction temperature could retain the structure of template protein as much as possible. The obtained MIPs showed excellent recognition ability to the template protein with the separation factor and selectivity factor value of 4.30 and 2.21, respectively. Consequently, it is an effective way to accurately imprint and separate template protein by cooperatively using circular dichroism spectroscopy and activity assay during the preparation of protein MIPs. The method of utilizing IL to stabilizing protein at high temperature would offer a good opportunity for various technologies to improve the development of macromolecules imprinting. Graphical Abstract
?  相似文献   

7.
The replacement of antibodies by molecularly imprinted polymers (MIPs) has been investigated for many decades. However, indirect protocols (including natural primary and secondary antibodies) are still utilized to evaluate the ability of MIP thin films to recognize target molecules. MIPs can be prepared as either a thin film or as particles, and cavities that are complementary to the template can be generated on their surfaces. We have prepared thin film MIPs and particle MIPs prepared by solvent evaporation and phase inversion, respectively, from solutions of poly(ethylene-co-vinyl alcohol) (pEVAL) in the presence of the target analytes amylase, lysozyme, and lipase. These were first adsorbed on MIP thin films and by MIP particles that contain fluorescent quantum dots. Sandwich fluoroimmunoassays were then conducted to quantify them in MIP-coated 96-well microplates. The method was applied to determine amylase in saliva, and results were compared with a commercial analytical system.
Figure
The recognition of amylase-imprinted poly(ethylene-co-vinyl alcohol)/quantum dots composite nanoparticles to amylase on the amylase-imprinted poly(ethylene-co-vinyl alcohol) coated 96-well microplates.  相似文献   

8.
Molecularly imprinted polymers (MIPs) are synthetic receptors that are able to specifically bind their target molecules in complex samples, making them a versatile tool in biosensor technology. The combination of MIPs as a recognition element with quartz crystal microbalances (QCM-D with dissipation monitoring) gives a straightforward and sensitive device, which can simultaneously measure frequency and dissipation changes. In this work, bulk-polymerized l-nicotine MIPs were used to test the feasibility of l-nicotine detection in saliva and urine samples. First, l-nicotine-spiked saliva and urine were measured after dilution in demineralized water and 0.1× phosphate-buffered saline solution for proof-of-concept purposes. l-nicotine could indeed be detected specifically in the biologically relevant micromolar concentration range. After successfully testing on spiked samples, saliva was analyzed, which was collected during chewing of either nicotine tablets with different concentrations or of smokeless tobacco. The MIPs in combination with QCM-D were able to distinguish clearly between these samples: This proves the functioning of the concept with saliva, which mediates the oral uptake of nicotine as an alternative to the consumption of cigarettes.
Figure
Schematics of the sample-preparation procedure for l-nicotine spiked saliva- and urine samples with various concentration levels  相似文献   

9.
PolyHIPEs are highly porous, crosslinked polymer foams typically synthesized within high internal-phase emulsions (HIPEs). Two kinds of polyHIPEs including poly(styrene-divinylbenzene) [P(St-DVB)] and poly(methyl methacrylate-divinylbenzene) [P(MMA-DVB)] foams are synthesized in this work, which are fabricated from HIPEs template via radiation-induced polymerization at room temperature. Traditional free radical polymerization initiated by potassium peroxydisulfate (KPS) at 60 °C for producing polyHIPE P(St-DVB) foams is also conducted for comparison. It is found that the amount of emulsifier can be reduced greatly in the radiation-induced polymerization of HIPEs at room temperature, compared with the traditional polymerization approach. Besides, P(MMA-DVB) PolyHIPE foams with a fine microstructure of highly interconnected pores have been successfully fabricated via radiation-induced polymerization in this work, which is usually difficult to be prepared by thermal-initiation method because of the intermediate hydrophobicity of methyl methacrylate monomer. The influences of the fraction of internal aqueous phase and the concentration of emulsifier on the structure and performance of foams are carefully explored. The structure and compression strength of the foams are characterized by scanning electron microscopy and a mechanical testing machine, respectively.
Figure
Macroporous poly(styrene-divinylbenzene) and poly(methyl methacrylate-divinylbenzene) foams are synthesized from HIPEs template via radiation-induced polymerization at room temperature using a common surfactant Span 80.  相似文献   

10.
We present hybrid films consisting of a composite prepared from polystyrene (PS) and titanium dioxide (titania; TiO2) and molecularly imprinted with 1-pyrenebutyric acid (PBA). The interaction of PBA with the polymer is shown to occur via binding of the carboxylic group to TiO2 and hydrophobic interaction of the pyrene moiety with the PS network. We investigated the effects of the PS fraction on morphology, imprinting properties, and guest binding. The template could be completely removed by incubating the films in an acetonitrile solution of pyrene, which is due to the stronger π–π interaction between PBA and pyrene than the interaction between PBA and its binding site. A guest binding study with pyrene, 1-aminopyrene, pyrenemethanol, and anthracene-9-carboxylic acid showed that the hybrid films possessed selectivity and much higher binding capacity for PBA. This study demonstrates the first case of clear PS-assisted imprinting, where the π–π interaction of the template with a linear (non-crosslinked) polymer creates selective binding sites and enhances the binding capacity. This is a driving force for guest binding in addition to the interaction of the template/analyte with TiO2. All molecularly imprinted films displayed better binding, repeatability and reversibility compared to the respective non-imprinted films.
Figure
Illustration of the fabricated polystyrene/titania hybrids imprinted with 1-pyrenebutyric acid providing the interaction between the organic and inorganic components through the pyrene and carboxylic moieties  相似文献   

11.
A monodisperse molecularly imprinted polymer (MIP) for curcumin was first prepared by precipitation polymerization using methacrylamide (MAM) and 4-vinylpyridine as functional co-monomers, divinylbenzene as a crosslinker, and a mixture of acetonitrile and toluene as a porogen. The use of MAM as the co-monomer resulted in the formation of a monodisperse MIP and non-imprinted polymer (NIP). MIP and NIP, respectively, were monodispersed with a narrow particle size distribution (3.3?±?0.09 and 3.5?±?0.10 μm). In addition to shape recognition, hydrophobic and hydrogen-bonding interactions affected the retention and molecular-recognition of curcumin on the MIP. The MIP for curcumin could extract curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin) in Curcuma longa L.
Figure
MIPs prepared with 4-VPY (left hand) and 4-VPY and MAM (right hand) as the functional monomers were polydispersed and monodispersed, respectively  相似文献   

12.
Molecularly imprinted solid phase extraction is an excellent tool for the preconcentration of trace analytes. We report on the preparation of such a material by firstly graft-polymerizing methacrylic acid onto the surface of silica gel particles, and then imprinting it by using phenol as a template and ethylene glycol diglycidyl ether as a crosslinker. The binding and recognition of phenol were examined by static methods. The binding capacity at saturation is 160?mg·g?1 in 9?h at pH 6. The selectivity coefficients relative to o-cresol and chlorophenol are 22 and 23, respectively. The pH value has a large effect. Adsorbed phenol can be eluted easily from the imprint with diluted sodium hydroxide solution, and the material is reusable.
Figure
Binding isotherms of NIP-PMAA/SiO2 and MIP-PMAA/SiO2 towards phenol, o-cresol and chlorophenol. The binding amount of NIP-PMAA/SiO2 towards three species is equivalent nearly. However, it would be quite different after imprinted with phenol. The binding amount of MIP-PMAA/SiO2 towards phenol doesn??t change, but the binding amount of MIP-PMAA/SiO2 towards o-cresol and chlorophenol is much lower than that towards phenol. The facts mentioned above prove that MIP-PMAA/SiO2 has high affinity, high recognition ability and special selectivity for phenol. This result shows that the surface molecular imprinting technique is feasible and successful  相似文献   

13.
We describe molecularly imprinted microspheres (MIMs) for the selective extraction of melamine from milk. The MIMs were made from melamine as the template molecule, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the linking agent. The MIMs were synthesized by suspension polymerization and characterized by rebinding experiments. They displayed high adsorption capacity, fast rebinding kinetics, and highly specific rebinding of melamine. The imprinting factor is 4.1. Scatchard analysis revealed a one-type rebinding behavior, the dissociation constant and maximum rebinding capacity being 37.59 g L?1 and 30.85 μmol g?1, respectively. The MIMs exhibited a 25% cross-reactivity towards atrazine, but less than 3.0% towards prometryn, clenbuterol and metronidazole. In addition, a MIM-based solid phase extraction (MISPE) column for melamine was prepared by packing MIMs into a common SPE cartridge. The MISPE extraction gave recoveries of 89.8 to 100.6% of melamine, with relative standard deviations of 5.9 to 7.5%. There was no significant loss of rebinding capacity after more than 60 repeated uses, thus demonstrating the high stability of the MISPE column. The MSPE column also was applied to the extraction of melamine from spiked liquid and powdered milk with satisfying accuracy and precision.
Figure
The melamine molecularly imprinted microsphere (MIMs) prepared by suspension polymerization displayed high adsorption capacity quick rebinding kinetic and highly specific rebinding. The MIMs-based solid phase extraction (MISPE) column was prepared by packing MIMs into a common SPE cartridge. The recoveries of MISPE for extracting melamine from milk samples were 76.26–90.95%.  相似文献   

14.
A new chiral stationary phase based on molecularly imprinted polymers (MIP) was prepared in ionic liquid by use of the metal pivot concept. Imprinted monoliths were synthesized by use of a mixture of R-mandelic acid (template), 4-vinylpyridine, ethylene glycol dimethacrylate, and several metal ions as pivot between the template and functional monomer. A ternary mixture of dimethyl sulfoxide–dimethylformamide–[BMIM]BF4 containing metal ions was used as the porogenic system. Separation of the enantiomers of rac-mandelic acid was successfully achieved on the MIP thus obtained, with resolution of 1.87, whereas no enantiomer separation was observed on the imprinted monolithic column in the absence of metal ions. The effects of polymerization conditions, including the nature of the metal ion and the ratios of template to metal ions and template to functional monomer, on the chiral separation of mandelic acid were investigated. The results reveal that use of metal ions as a pivot, in combination with ionic liquid, is an effective method for preparation of a highly efficient MIP stationary phase for chiral separation.
Figure
A new chiral stationary phase based on molecularly imprinted polymers (MIP) was prepared in ionic liquid by use of the metal pivot concept  相似文献   

15.
We report on a surface molecular imprinting strategy for synthesizing core-shell particles whose shell is imprinted with chlorpyrifos (CPF). The particles were prepared by copolymerization of the methacryloyl groups on the surface of silica particles modified with 3-methacryloxypropyl trimethoxysilane a functional monomer and a cross-linking agent. The imprinted particles exhibit larger binding capacity, faster binding kinetics, and higher recognition selectivity for CPF. Combined with highly sensitive chemiluminescence assay, the method was applied to the determination of CPF with a detection limit of 0.92?nM which is about 2 orders of magnitude lower than that by conventional CL method. The method also displays repeatability for more than 200 times.
Figure
Schematic illustration of a surface molecular imprinting strategy for synthesizing core-shell particles with CPF-imprinted shells and the CL kinetics curves of MIP-based CL method for the determination of chlorpyrifos.  相似文献   

16.
17.
We have prepared a hydrophilic molecularly imprinted polymer (MIP) for the hydrophobic compound bisphenol A (BPA) in aqueous solution using 3-acrylamido-N,N,N-trimethylpropan-1-aminium chloride (AMTC) as the functional monomer. Under redox-polymerization conditions, BPA forms an ion-pair with AMTC, which was confirmed by 1H-NMR titration. The imprinting effect in aqueous solution was evaluated by comparison of this material with the corresponding non-imprinted polymer (NIP) and with a control polymer (CP) bearing no AMTC. The MIP showed the highest activity among the three polymers, and the imprinting factors as calculated from the amount of BPA bound to the MIP divided by the amounts bound to NIP and CP, respectively, are 1.8 and 6.0. The MIP was selective for BPA in aqueous solution, while structurally related compounds are not recognized. Such a selectivity for a hydrophobic compound is rarely observed in aqueous medium because non-specific binding of BPA inevitably leads to hydrophobic interaction.
Figure
A hydrophilic molecularly imprinted polymer (MIP) for bisphenol A (BPA) recognition was prepared in aqueous solution. The obtained MIP (BPA-MIP) showed good selectivity under aqueous conditions  相似文献   

18.
We have studied the influence of the experimental conditions during synthesis on the properties of molecularly imprinted sol-gels for serine. The influence of hydrophobicity, presence of amino groups, additives, water/ethanol ratio and type of catalyst (basic or acid) were optimized using a Plackett-Burmann design in 12 blocks. Serine was selected as a target molecule for the imprinting process, and each imprinted and non-imprinted material was studied by competitive and non-competitive protocols. The results demonstrate the strong effect of 3-aminopropyltrimethoxysilane on the recognition capabilities of the materials in competitive assays. The mechanisms of interaction appear to be similar in acid-catalysed sol-gels, whereas sol-gels obtained under base catalysis tend to give interactions affecting the competitive experiments only.
Figure
Suggested interaction mechanism between 3-APTEOS containing xero-gels and serine.  相似文献   

19.
Immobilized enzyme reactors (IMERs) produced by the covalent attachment of ribonuclease A to macroporous methacrylate-based monolithic supports using different experimental approaches are discussed and compared. Enzyme immobilization was carried out by direct covalent binding, as well as through attachment via a polymer spacer. The kinetic properties of an IMER operating in either recirculation mode or zonal elution mode were studied. Additionally, the effect of flow rate on the bioconversion efficiency of each IMER sample was examined.
Figure
Enzyme immobilization via aldehyde-bearing macromolecular spacer on the surface of epoxy-containing monoliths  相似文献   

20.
We have prepared core-shell magnetic molecularly imprinted polymer nanoparticles for recognition and extraction of tributyl tin (TBT). The use of particles strongly improves the imprinting effect and leads to fast adsorption kinetics and high adsorption capacities. The functional monomer acrylamide was grafted to the surface of Fe3O4 nanospheres in two steps, and MIP layers were then formed on the surface by creating a MIP layer on the surface consisting of poly(ethyleneglycol dimethacrylate) with a TBT template. The particles were characterized in terms of morphological, magnetic, adsorption, and recognition properties. We then have developed a method for the extraction of TBT from spiked mussel (Mytilidae), and its determination by liquid chromatography-tandem mass spectrometry. The method has a limit of detection of 1.0 ng?g?1 (n?=?5) of TBT, with a linear response between 5.0 and 1,000 ng?g?1. The proposed method was successfully applied to the determination of trace TBT in marine food samples with recoveries in the range of 78.3–95.6 %.
Figure
The preparation procedures of core-shell magnetic molecularly imprinted polymer nanoparticles for recognition and extraction of tributyl tin (TBT) in seafood  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号