首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, investigations of the magnetic microstructure of anisotropic sintered SmCo5 permanent magnets with high coercivity have been made using the colloid-scanning electron microscopy (SEM) technique and magnetic force microscopy (MFM). The magnets were produced by powder metallurgy (sintering) process and consisted of oriented grains with an average size of about 20 μm. They were studied in the thermally demagnetized state. Owing to the application of digital image recording, enhancement and analysis, high-quality images of the magnetic microstructure were obtained and analyzed not only qualitatively but also quantitatively. Improvements over previous results were achieved. The grains show the presence of magnetic domains, as expected. At the surface perpendicular to the alignment axis, the coarse domain structure in the form of a maze pattern with surface reverse spikes is observed. The main (maze) domains had typical widths 3–5 μm. The reverse spike domains were imaged as circles typically 1–2 μm in diameter or as elongated regions up to about 6 μm in length. Interestingly, in addition to the coarse maze domains and reverse spikes near the surface, a fine surface domain structure is revealed with MFM. The fine scale domains are found to be magnetized perpendicular to the surface and their occurrence is attributed to further reduction of the magnetostatic energy at the cost of a larger domain wall energy. On the surface parallel to the alignment axis, the main domains within individual grains are imaged as stripe domains with domain walls running approximately parallel to the alignment axis, while reverse spike domains are displayed in the form of triangular domains and occur near some grain boundaries, pores or precipitations. The magnetic alignment of grains was found to be good, but certainly not perfect. In most cases the domain structures within grains were independent of their neighbors, but in some cases (not so rare) observations indicated the existence of significant magnetostatic coupling between neighboring grains. The main and surface domain widths were determined by digital means using the stereologic method of Bodenberger and Hubert. Moreover, the domain wall energy and other intrinsic parameters for the studied magnets were determined.  相似文献   

2.
《Current Applied Physics》2018,18(3):329-334
In this work, we investigated the influence of additional compounds of Nd-Cu-Al, Dy-Nb-Al, Dy-Zr-Al and Nb-Cu-Al on coercivity of sintered Nd-Fe-B magnets. The additional nanoparticles with size in the range of 40–80 nm was mixed with the micrometer Nd-Fe-B powder before sintering process. The results show that the coercivity of the sintered Nd-Fe-B magnets can be improved by introducing additional nanoparticles to their grain boundaries. The improvement of the coercivity of the magnets is clearly dependent on composition and fraction of the additional compounds. While the Dy-Nb-Al, Dy-Zr-Al and Nb-Cu-Al compounds degrade the coercivity of the sintered Nd-Fe-B magnets, the Nd-Cu-Al nanoparticles considerably improve this quantity. The coercivity the sintered Nd16.5Fe77B6.5 magnets has been enhanced about 40% by adding 3 wt% of the Dy-free compound of Nd40Cu30Al30.  相似文献   

3.
To increase coercivity and thermal stability of sintered Nd–Fe–B magnets for high-temperature applications, a novel terbium sulfide powder is added into(Pr_(0.25)Nd_(0.75))_(30.6)Cu_(0.15)Fe_(bal)B_1(wt.%) basic magnets. The effects of the addition of terbium sulfide on magnetic properties, microstructure, and thermal stability of sintered Nd–Fe–B magnets are investigated.The experimental results show that by adding 3 wt.% Tb_2S_3, the coercivity of the magnet is remarkably increased by about 54% without a considerable reduction in remanence and maximum energy product. By means of the electron probe microanalyzer(EPMA) technology, it is observed that Tb is mainly present in the outer region of 2:14:1 matrix grains and forms a well-developed Tb-shell phase, resulting in enhancement of HA, which accounts for the coercivity enhancement.Moreover, compared with Tb_2S_3-free magnets, the reversible temperature coefficients of remanence(α) and coercivity(β) and the irreversible flux loss of magnetic flow(hirr) values of Tb_2S_3-added magnets are improved, indicating that the thermal stability of the magnets is also effectively improved.  相似文献   

4.
The single-phase nanocrystalline FePt magnets composed of 343 irregular-shaped grains are built. The demagnetization curves are simulated by micromagnetic finite element method. The remanence, coercivity and maximum energy product of the magnets decrease with deteriorating grain alignment. The characteristics of variation of magnetic properties with the degree of orientation are closely related to the average grain size of nanocrystalline magnets. The contribution of intergrain exchange coupling (IGEC) to remanence enhancement is associated to the degree of orientation, and decreases with improved grain alignment. With decreasing grain size, coercivity increases for anisotropic nanocrystalline magnets, which is completely different from that of isotropic nanocrystalline magnets.  相似文献   

5.
本文对取向烧结Nd-Fe-B合金沿取向易轴饱和磁化后的反磁化过程分四个阶段进行了理论研究。结果表明,主相晶粒表面软磁性区成核及从表面向晶粒内部不可逆畴壁位移对Nd-Fe-B合金的矫顽力起决定性作用。矫顽力随温度升高而急速下降主要是由于热运动破坏了主相四方结构的完整性,从而使软磁性过渡区变厚所致。 关键词:  相似文献   

6.
The magnetic and mechanical properties of Nd-Fe-B magnets at different hot deformation temperatures have been investigated. The results showed that the optimum magnetic and mechanical properties and the highest crystallographic alignment of Nd-Fe-B magnets were obtained at 700 °C, and the possible reasons were analyzed. The microstructures show that abnormal grain growth is not observed at 650 °C; there exist many small spherical grains, and these small grains do not align during die upsetting. The average size of the grains and the volume fraction of coarse grains increase with increase in deformation temperature. The coarse grains do not align during die upsetting, and the non-alignment regions enlarge with increase in deformation temperature.  相似文献   

7.
烧结Nd-Fe-B磁体的微观结构和冲击韧性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
胡志华  连法增  朱明刚  李卫 《物理学报》2008,57(2):1202-1206
对烧结Nd15Fe72-xCoyNbxB8(y=0, 5;x=0, 05, 10, 15, 20, 25)永磁体的微观结构和冲击韧性及二者间的关系进行了研究.结果表明,添加Nb能够改善Nd-Fe-B磁体的微观结构,提高磁体的冲击韧性.当无Co磁体中Nb的原子百分含量为15%时,其冲击韧性达到最大;对于添加了Co的磁体,其冲击韧性的 关键词: Nd-Fe-B 冲击韧性 微观结构 晶界  相似文献   

8.
烧结Nd-Fe-B永磁合金矫顽力机制的理论与实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
从理论和实验上研究了烧结Nd-Fe-B永磁合金的矫顽力随取向磁场的变化规律。指出磁体反磁化过程主要是晶粒边界软磁性区的反磁化成核以及反磁化核长大成畴并向晶粒内部不可逆畴壁位移的过程。比较了成核场与退钉扎场的大小及其随磁场方向的变化,并得出结论:退钉扎场是决定烧结Nd-Fe-B磁体矫顽力的主要机制。 关键词:  相似文献   

9.
The magnetic properties of isotropic epoxy resin-bonded magnets prepared by mixing a hard magnetic powder made from melt quenched Nd–Fe–Co–B ribbons and a soft magnetic iron powder have been examined. The magnetization reversal processes and the magnetic parameters have been studied by the measurement of the virgin magnetization curves, the major and minor hysteresis loops and sets of recoil curves. From these recoil curves the field dependence of the reversible and irreversible magnetization components during the magnetization and demagnetization processes has been derived. The remanence relationship was used to study the nature of magnetic interaction between the grains. A study of interaction domains was conducted using optical microscopy. Groups of domains, each over several grains, were observed. It was found that the reversal process in the samples investigated involves the rotation of magnetization vectors in the iron powder grains and pinning of domain walls at the MQP-B grain boundaries.  相似文献   

10.
周贝贝  李向斌  曹学静  严高林  闫阿儒 《中国物理 B》2016,25(11):117504-117504
To investigate the coercivity,corrosion resistance,and thermal stability of Nd-Fe-B magnets,their properties were investigated at room and high temperature before and after doping with Dy_(80)Ga_(20)(at.%) powder.The coercivity of the magnets increased from the undoped value of 12.72 kOe to a doped value of 21.44 kOe.A micro-structural analysis indicates that a well-developed core-shell structure forms in the magnets doped with Dy_(80)Ga_(20) powder.The improvement in magnetic properties is believed to be related to the refined and uniform matrix grains,continuous grain boundaries,and a hardened(Nd,Dy)_2Fe_(14)B shell surrounding the matrix grains.Additionally,the doped magnets exhibit an obvious improvement in thermal stability.For the magnets with added Dy_(80)Ga_(20) powder,the temperature coefficients of remanence(α) and coercivity(β) increased to-0.106%℃~(-1) and-0.60%℃~(-1) over the range 20-100 ℃,compared to temperature coefficients of-0.117%℃~(-1)(α) and-0.74%℃~(-1)(β) in the regular magnets without Dy_(80)Ga_(20) powder.The irreversible loss of magnetic flux(Hirr) was investigated at different temperatures.After being exposed to 150 ℃ for 2 h,the Hirr of magnets with 4 wt.%Dy_(80)Ga_(20) decreased by ~95%compared to that of the undoped magnets.The enhanced temperature coefficients and Hirr indicate improved thermal stability in the doped Nd-Fe-B magnets.The intergranular addition of Dy_(80)Ga_(20) also improved the corrosion resistance of the magnets because of the enhanced intergranular phase.In a corrosive atmosphere for 96 h,the mass loss of the sintered magnets with 4 wt.%Dy_(80)Ga_(20) was 2.68 mg/cm~2,less than 10%of that suffered by the undoped magnets(28.1 mg/cm~2).  相似文献   

11.
Zhe-Huan Jin 《中国物理 B》2023,32(1):17505-017505
A grain boundary diffusion (GBD) process with Pr80-xAlxCu20 (x = 0, 10, 15, 20) low melting point alloys was applied to commercial 42M sintered Nd-Fe-B magnets. The best coercivity enhancement of a diffused magnet was for the Pr65Al15Cu20 GBD magnet, from 16.38 kOe to 22.38 kOe. Microstructural investigations indicated that increase in the Al content in the diffusion source can form a continuous grain boundary (GB) phase, optimizing the microstructure to enhance the coercivity. The coercivity enhancement is mainly due to the formation of a continuous GB phase to separate the main phase grains. Exchange decoupling between the adjacent main phase grains is enhanced after the GBD process. Meanwhile, the introduction of Al can effectively promote the infiltration of Pr into the magnet, which increases the diffusion rate of rare-earth elements within a certain range. This work provides a feasible method to enhance coercivity and reduce the use of rare-earth resources by partial replacement of rare-earth elements with non-rare-earth elements in the diffusion source.  相似文献   

12.
成问好  李卫  李传健  潘伟 《物理学报》2001,50(11):2226-2229
分析了微观结构和热处理工艺对矫顽力的影响,发现在矫顽力一定的情况下,磁体的微观结构越“差”,则保证不同批次磁体矫顽力变化不大于某一给定值所需的工艺条件就越严格;反之则越宽松.就同一炉产品而言,微观结构越好的磁体,其矫顽力受烧结(热处理)炉温度梯度的影响越小,其结果是该炉产品的一致性越高.反之,受温度梯度的影响越大,磁体的一致性也就越低.该研究结果说明:在条件许可的情况下,应首先考虑通过改善磁体的微观结构来提高磁性能一致性. 关键词: Nd-Fe-B永磁体 微观结构 内禀矫顽力 一致性  相似文献   

13.
Barkhausen-like magnetization jumps at temperatures T < 9.5 K and the behaviour of the coercive field at low temperatures are studied in sintered Nd-Fe-B magnets with different chemical and phase compositions. The nonlinear temperature dependence of the coercive field Hc is well described in the thermal activation model at T > 10 K. The low temperature anomalies of Hc are discussed in terms of the quantum tunneling of the domain wall through the intergrain boundaries.  相似文献   

14.
Microstructures of fine grained Nd-Fe-B sintered magnets that were produced by the pressless process were investigated to understand the origin of the sudden coercivity decrease below a certain grain size. The intrinsic coercivity is inversely proportional to ln D2 with the highest coercivity of 17 kOe at D∼4.5 μm, below which the coercivity drops as the grain size decreases. We found that the degradation of the coercivity of the magnet with a grain size of 3 μm was mainly caused by the inhomogeneous distribution of fcc-Nd oxide whose volume fraction increased with respect to the dhcp Nd-rich phase.  相似文献   

15.
We have investigated the effect of lattice disorders near the surface of hard magnetic Nd2Fe14B grains on coercivity using artificial interfaces created by sputter depositing Nd on polished surface of Nd-Fe-B sintered magnets. The interfacial structure was manipulated by annealing the coated samples at 550 °C in vacuum with and without Ta cap. Nano-beam electron diffraction revealed a few nm thick disordered layer within the Nd2Fe14B phase at the Nd/Nd2Fe14B interface of a low coercivity sample, while a high coercivity sample showed a well-defined crystal structure of Nd2Fe14B near the NdOx/Nd2Fe14B interface.  相似文献   

16.
《中国物理 B》2021,30(6):67503-067503
We investigate the effects of post-sinter annealing on the microstructure and magnetic properties in B-lean Nd–Fe–B sintered magnets with different quantities of Nd–Ga intergranular additions. The magnet with fewer Nd–Ga additions can enhance 0.2 T in coercivity, with its remanences nearly unchanged after annealing. With the further increase of the Nd–Ga addition, the annealing process leads coercivity to increase 0.4 T, accompanied by a slight decrease of remanence. With the Nd–Ga addition further increasing and after annealing, however, the increase of coercivity is basically constant and the change of remanence is reduced. Microstructure observation indicates that the matrix grains are covered by continuous thin grain boundary phase in the magnets with an appropriate Nd–Ga concentration after the annealing process. However, the exceeding Nd–Ga addition brings out notable segregation of grain boundary phase, and prior formation of part RE6 Fe13 Ga phase in the sintered magnet. This prior formation results in a weaker change of remanence after the annealing process.Therefore, the diverse changes of magnetic properties with different Nd–Ga concentrations are based on the respective evolution of grain boundary after the annealing process.  相似文献   

17.
The mechanical properties and microstructure of Nd-Fe-B magnets produced at various die-upset levels have been investigated. The results showed that the Vickers hardness and the fracture toughness of Nd-Fe-B magnets first increased, and then rapidly decreased with the increase in die-upset level. The optimum Vickers hardness and the fracture toughness were obtained at the die-upset level of 40%. The peak intensity of the (1 0 5) peak is the maximum value, the relative intensities of the (2 1 2), (2 1 4) and (3 1 4) peaks decline and the relative intensity of the (0 0 6) peak increases with the increase in die-upset level. The microstructures show that the variation in the size of small spherical grains is not obvious, and the volume fraction of small spherical grains declines gradually with the increase in die-upset level.  相似文献   

18.
In this study, magnetic domains in Pr16Fe76B8 sintered magnets have been observed by Kerr effect and a histogram of the angular distribution of domain orientations has been used to determine the magnetic texture (cos Φ). The degree of easy-axis alignment of Pr2Fe14B matrix grains in these magnets has been also determined by X-ray pole figure analysis using the (0 0 4) reflection. The (0 0 4) pole figure measurements were carried out by the Schultz's reflection method. The (0 0 4) normalized intensity data has been fitted for a Gaussian distribution and the degree of crystal alignment, cos Θ, has been calculated using the Stoner–Wohlfarth model. Comparison of these methods has been carried out. It has been shown that in magnets with medium and high degrees of crystallographic alignment, the pole figure values are higher than that obtained by the Kerr effect method. Conversely, in magnets with low degrees of alignment, cos Θ is lower than cos Φ.  相似文献   

19.
We investigate domain wall and domain structure in a monolyer film consisting of ferromagnetic grains with biaxial anisotropy, which are seen to be the static versions of instanton and soliton, respectively. The equation of motion of the magnetization vector is reduced to the (1 + 2)-dimensional sine-Gordon field equation in strong anisotropy limit and the instanton and soliton configurations are obtained analytically. Various new domain structures in the ferromagnetic film are found.  相似文献   

20.
Recent studies have shown the effects of a post sintering heat treatment at 1000 °C for 24 h on the microstructure and magnetic properties of Pr-Fe-B/Nd-Fe-B magnets based on Nd16Fe76B8 and Pr16Fe76B8. In an attempt to understand the influence of environmental factors, an investigation into the effects of annealing under different degrees of vacuum for both types of sintered magnets has been carried out. The effect of annealing the Pr-Fe-B magnets at 1000 °C for 24 h resulted in a general increase in the magnetic properties, especially the intrinsic coercivity, although the degree of improvement appeared to be dependent on the initial annealing conditions (ambient pressure). Oxygen analysis of sintered and annealed magnets indicates a change in the nature of the grain boundary phases after the annealing treatment. The effect of annealing the Nd-Fe-B magnets at 1000 °C for 24 h resulted in a general decrease in the magnetic properties, especially the intrinsic coercivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号