首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A research effort is undertaken to understand the mechanism of metal release from, e.g., inhaled metal particles or metal implants in the presence of proteins. The effect of protein adsorption on the metal release process from oxidized chromium metal surfaces and stainless steel surfaces was therefore examined by quartz crystal microbalance with energy dissipation monitoring (QCM-D) and graphite furnace atomic absorption spectroscopy (GFAAS). Differently charged and sized proteins, relevant for the inhalation and dermal exposure route were chosen including human and bovine serum albumin (HSA, BSA), mucin (BSM), and lysozyme (LYS). The results show that all proteins have high affinities for chromium and stainless steel (AISI 316) when deposited from solutions at pH 4 and at pH 7.4 where the protein adsorbed amount was very similar. Adsorption of albumin and mucin was substantially higher at pH 4 compared to pH 7.4 with approximately monolayer coverage at pH 7.4, whereas lysozyme adsorbed in multilayers at both investigated pH. The protein-surface interaction was strong since proteins were irreversibly adsorbed with respect to rinsing. Due to the passive nature of chromium and stainless steel (AISI 316) surfaces, very low metal release concentrations from the QCM metal surfaces in the presence of proteins were obtained on the time scale of the adsorption experiment. Therefore, metal release studies from massive metal sheets in contact with protein solutions were carried out in parallel. The presence of proteins increased the extent of metals released for chromium metal and stainless steel grades of different microstructure and alloy content, all with passive chromium(III)-rich surface oxides, such as QCM (AISI 316), ferritic (AISI 430), austentic (AISI 304, 316L), and duplex (LDX 2205).  相似文献   

2.
Poly(o-toluidine) (POT) coatings were electrochemically synthesized on 304 stainless steel using cyclic voltammetric method. These coatings were characterized by Fourier transform infrared spectroscopy, UV–vis absorption spectroscopy, and cyclic voltammetry. The corrosion performance of POT coating in aqueous 3 wt% sodium chloride was assessed by the electrochemical techniques such as open circuit potential measurements, potentiodynamic polarization technique, cyclic potentiodynamic polarization measurements, and electrochemical impedance spectroscopy. The results reveal that POT coating on 304 stainless steel prevents general and localized corrosion, and reduces the exchange current density almost by a factor of 45 than bare 304 stainless steel.  相似文献   

3.
Antibacterial peptides, magainin I and nisin were covalently bound to stainless steel surfaces. Several procedures of surface functionalisation processes have been investigated and optimized, each step being characterized by polarization modulation reflection absorption infrared spectroscopy (PM-RAIRS) and X-ray photoemission spectroscopy (XPS). Grafting of antibacterial peptides was successfully achieved by a 3 steps functionalisation process on a chitosan polymeric layer. The antibacterial activity of the anchored magainin and nisin was tested against a gram-positive bacteria, Listeria ivanovii, i.e., the possible survival and attachment of this bacteria, was characterized on modified stainless steel surfaces. The results revealed that the adsorbed peptides reduced the adhesion of bacteria on the functionalised stainless steel surface.  相似文献   

4.
The grafting of trialkoxysilane molecules should also give rise to the formation of a siloxane network at the substrate's surface when trialkoxysilanes are used. Other candidates that might be able to act as adhesion promoters at metallic surfaces are dimethylalkoxysilanes. The advantage of dimethylalkoxysilanes is that only one silanol group is produced during the hydrolysis step, leading to the formation of a grafted monolayer onto the steel. Moreover, the chemical grafting of stainless steel, which exhibits a low surface reactivity, is of great interest for industrial applications such as adhesive bonding or coatings. The objective of this work was to chemically graft dimethylalkoxysilanes onto AISI 316L stainless steel and to analyze the grafted layer by X‐ray photoelectron spectroscopy (XPS). Investigation of the hydrolysis of these molecules in aqueous solutions was also performed by proton nuclear magnetic resonance spectroscopy (1H NMR). The grafting of 3‐(ethoxydimethylsilyl)propylamine (APDES) and 3‐glycidoxypropyldimethylethoxysilane (GPDES) was achieved onto stainless steel after a controlled hydrolysis reaction. A pH inferior or equal to 5 was necessary to obtain a sufficient hydrolysis of silanes. XPS results have evidenced the grafting of the silanes onto stainless steel. The signal of the Si 2p peak clearly showed the formation of a covalent bond between APDES and the stainless steel surface through the O atoms giving rise to a uniform layer of adsorbed molecules. Moreover, this grafted layer is strongly stable as no removal of the alkoxysilane was observed after immersion in hot water which is very critical for these molecules. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Methylene blue and its congeners as model dyes were adsorbed onto stainless steel particles at different ionic strengths, pH values, and ethanol contents, and the adsorption mechanism was investigated. A Fourier transform infrared spectroscopy (FTIR) analysis of the dyes adsorbed on the stainless steel plate was carried out to determine the orientations of the adsorbed dyes on stainless steel surface. The adsorption isotherms for all the dyes tested were approximated by a Langmuir equation (Q=Kq(m)C/(1+KC)) in most cases except under strongly basic conditions. From the ionic strength and ethanol content dependencies of the K value in the Langmuir equations, both the electrostatic and hydrophobic interactions were indicated to contribute to the adsorption of the dyes at neutral pH. By comparing the K and q(m) values for the methylene blue congeners and with the aid of the FTIR analyses, it was found that the kind of substituent groups at most positions of the polyheterocycles of methylene blue strongly affects the adsorption behavior, particularly the area occupied by an adsorbed dye molecule, the affinity for the stainless steel surface, and the orientation of the adsorbed dye molecule on the stainless steel surface.  相似文献   

6.
Stainless steel 316L is a widely used biomaterial substrate whose biocompatibility could be improved by surface modification. As a first step in this process, self-assembled monolayers of octanoic acid, octadecylcarboxylic acid, 16-hydroxyhexadecanoic acid, 12-aminododecanoic acid, and 1,12-dodecane dicarboxylic acid have been formed on the native oxide surface of stainless steel 316L by a simple, one-step solution deposition method. The ordering, close-packing, and coverage of the monolayers formed were characterized by diffuse reflectance infrared spectroscopy, contact angle measurements, and atomic force microscopy. The same procedure was applicable for all long alkyl chain carboxylic acids. This process formed chemically and mechanically stable monolayers. These carboxylic acids formed a bidentate bond with the stainless steel substrate. Robust chemical attachment of the acids to stainless steel through a simple process provides a stepping stone to improving the biocompatibility of stainless steel 316L.  相似文献   

7.
β-Cyclodextrin(β-CD) can be used for drug loading and release in biomedical application. β-Cyclodextrinsalicylate(β-CD-S) was synthesized by transesterification and then was electrodeposited on the surface of stainless steel(SS) by the anodic electrooxidation polymerization of the salicylate. 1H NMR spectrometry was used to determine the structure of β-CD-S. FTIR spectroscopy and XPS were applied to verifying the synthesized β-CD-S and the existence of the electrodeposited layer on the SS surface, respectively. Tafel plots and electrochemical impedance spectroscopy(EIS) technologies were used to estimate the corrosion resistance of β-CD-covered stainless steel. Electrochemical quartz crystal microbalance was applied to determining the drug loading of the stainless steel before and after its modification. E. coli was selected as a harmful microbe to evaluate the antibacterial properties of the stainless steel with the comparison of optical density values.  相似文献   

8.
聚吡咯/聚苯胺复合型导电聚合物防腐蚀性能   总被引:1,自引:0,他引:1  
薛守庆 《应用化学》2013,30(2):203-207
采用循环伏安法,在含吡咯和苯胺的0.3 mol/L草酸水溶液中制备了聚吡咯/聚苯胺(PPy/Pani)的复合型导电聚合膜。采用红外光谱、极化曲线、自腐蚀电位-时间曲线、扫描电子显微镜和电化学阻抗谱研究了共聚膜的防腐蚀性能。结果表明,在1 mol/L H2SO4中,PPy、Pani与不锈钢基体发生氧化还原反应,促进不锈钢表面发生钝化;当苯胺与吡咯浓度比为1∶3时,制备得到的复合型导电聚合膜所保护的不锈钢自腐蚀电流最小,自腐蚀电位最高,保护时间最长。PPy、Pani及其共聚膜在3.5%NaCl溶液中电化学阻抗谱表明,所制备的PPy、Pani及其共聚物膜与不锈钢基体发生氧化还原反应,使其表面钝化;当Cl-到达不锈钢表面时,破坏钝化膜导致不锈钢腐蚀。  相似文献   

9.
Polyaniline(PANI)film was electrosynthesized on 304 stainless steel by cyclic voltammetry using aqueous oxalic acid as supporting electrolyte.The potential sweep rates were changed to achieve the PANI film with different thickness and structures.Protective properties of the PANI film for corrosion of stainless steel in 3% NaC1 aqueous solution were investigated by monitoring potentiodynamic polarization curves and electrochemical impedance spectroscopy(EIS).The results showed that the PANI film which was formed with lower sweep rate led to more positive shift of corrosion potential and greater charge transfer resistance,reflecting higher inhibition for corrosion of the stainless steel.  相似文献   

10.
The electrochemical formation and characterization of decanoic, myristic, palmitic, and stearic acid self-assembled monolayers on a native oxide surface of 316L stainless steel have been studied. This work describes a new approach to surface modification of stainless steel in which the self-assembly of n-alkanoic acids is facilitated by applying a potential to the stainless steel in an organic electrolyte solution. While decanoic acid forms a disorganized monolayer as a result of sweeping the potential in an acetonitrile solution containing 0.1 mM of the respective acid, longer acids, that is, myristic and palmitic acids, form highly ordered closed-packed monolayers. This electrochemical approach results in highly reproducible monolayers that are deposited within a shorter time than the traditional assembly process. The monolayers were characterized by cyclic voltammetry, double-layer capacity (ac voltammetry), contact angle measurements, X-ray photoelectron spectroscopy, and external reflection-absorption Fourier transform infrared spectroscopy. The utilization and implications of this modification technique are discussed.  相似文献   

11.
磷脱氧铜和不锈钢在醋酸介质中腐蚀行为的电化学研究   总被引:2,自引:0,他引:2  
胡荣宗  孙占梅 《电化学》1996,2(3):332-337
应用交流阻抗和极化曲线法研究磷脱氧铜和SW-206不锈钢在醋酸介质中腐蚀行为及过程的控制特征,比较介质温度,浓度及溶解氧对这两种金属在醋酸中腐行为的影响,分析其原因所在,为石油化工中的醋酸设备的正确选材及有效防腐提供实验依据。  相似文献   

12.
The ability of adsorbed biosurfactants (Pf and Lb) obtained from gram-negative bacterium (Pseudomonas fluorescens) or gram-positive bacterium (Lactobacillus helveticus) to inhibit adhesion of four listerial strains to stainless steel was investigated. These metallic surfaces were characterized using the following complementary analytical techniques: contact-angle measurements (CAM), atomic force microscopy (AFM), polarization modulation-infrared reflection-adsorption spectroscopy (PM-IRRAS) and X-ray photoelectron spectroscopy (XPS). Contact-angles with polar liquids (water and formamide) indicated that the stainless steel surface covered with adsorbed biosurfactant was more hydrophilic and electron-donating than bare stainless steel. The surface characterization by XPS and PM-IRRAS revealed that conditioning the stainless steel changes the substrate in two ways, by modifying the surface alloy composition and by leaving an thin adsorbed organic layer. AFM observations enabled to say that the layer covered entirely the surface and was probably thicker (with patches) in the case of Pf-conditioned surfaces compared to the Lb-conditioned ones, which seemed to be less homogeneous. Though the added layer was thin, significant chemical changes were observed that can account for drastic modifications in the surface adhesive properties. As a matter of fact, adhesion tests showed that both used biosurfactants were effective by decreasing strongly the level of contamination of stainless steel surfaces by the four strains of Listeria monocytogenes. The more important decrease concerned the CIP104794 and CIP103573 strains (>99.7%) on surface conditioned by L. helveticus biosurfactant. A less reduced phenomenon (75.2%) for the CIP103574 strain on stainless steel with absorbed biosurfactant from P. fluorescens was observed. Whatever the strain of L. monocytogenes and the biosurfactant used, this antiadhesive biologic coating reduced both total adhering flora and viable and cultivable adherent bacteria on stainless steel surfaces. This study confirms that biosurfactants constitute an effective strategy to prevent microbial colonization of metallic surfaces by pathogenic bacteria like the food-borne pathogen L. monocytogenes.  相似文献   

13.
Influence of pH on the chemical and structural properties of the oxide films formed on 316L stainless steel, alloy 600 and alloy 690 in high temperature aqueous environments. The oxide films formed on 316L stainless steel, alloy 600 and alloy 690 at 320°C in high temperature aqueous environments of different pH have been examined by glow discharge optical spectroscopy, scanning electron microscopy, atomic force microscopy and capacitance measurements. The analytical study reveals that the films formed at pH 5 are mainly composed of chromium oxides. When the pH increases the chromium concentration decreases and those of the other two elements (Ni and Fe) tend to increase. The films formed at pH 5 on 316L stainless steel and alloy 600 are thick and powder-like. The film formed at the same pH on alloy 690 is thin and is composed of a compact protective inner layer and a less-compact outer layer formed by crystals of mixed iron-nickel-chromium oxides. The morphological appearance of the thick films and that of the thin films is very different. However, equivalent morphologies can be observed for the relatively thin duplex films formed at pH8 and pH9.5 on the 316L stainless steel and nickel-base alloys. The evolution of the chemical composition of the films is accompanied by important changes from the point of view of their semiconductivity.  相似文献   

14.
Ce-Pt-Pd/不锈钢丝网催化剂的制备与催化性能   总被引:2,自引:0,他引:2  
采用阳极氧化技术在不锈钢丝网上自生长了一层结构致密的阳极氧化膜,并以此为载体,制备出一种高活性、高稳定性的负载型Ce-Pt-Pd催化剂.考察了该系列催化剂对甲苯、丙酮和乙酸乙酯的氧化活性,并用扫描电镜、X射线光电子能谱和程序升温氧化技术对催化剂进行了表征.结果表明,不锈钢丝网载体表面自生长的氧化物膜十分有利于活性组分的负载,制得的催化剂具有较高的催化燃烧有机化合物的活性和稳定性.  相似文献   

15.
采用自腐蚀电位、电化学极化曲线、电化学阻抗谱技术研究了316不锈钢在无菌培养基介质和海水微生物接种培养有菌培养基介质中不同周期的腐蚀行为.结果表明,316不锈钢电极在有菌介质中比在无菌介质中的腐蚀电流密度大,腐蚀电位负移,微生物加速了不锈钢的腐蚀速度.随着浸泡时间的增加,有菌介质中的不锈钢电极极化电阻值逐渐减小,表明了海洋微生物的附着和繁殖加速了316不锈钢的腐蚀速率,降低了其在海洋环境中的耐蚀性.  相似文献   

16.
Nickel-based coatings are potential candidates for the protection of electrochemical dissolution of steel surfaces. Such coatings, elaborated by magnetron sputtering in a nitrogen atmosphere, offer good corrosion protection, good adherence as well as stability for metallic structures. NiCr alloys with almost constant composition have been deposited with different nitrogen contents on stainless steel and carbon steel surfaces. The coating uniformity, homogeneity, composition and crystallinity have been studied by scanning electron microscopy, energy-dispersive X-ray spectrometry, atomic force microscopy and X-ray diffraction techniques. The corrosion degradation behavior of all the samples was tested in NaCl and NaCl and CO2 mixture exposures using electrochemical impedance spectroscopy measurements. Nitrided NiCr alloys on a stainless steel substrate resulted with better adhesion than carbon steel, by delaying the corrosion mechanism when exposed to NaCl and CO2 solution. A comparison of the corrosion resistive behavior of the substrates (stainless steel, carbon steel) and the coatings is made by using the electrical capacitance concept from a double-layer model for the coating–metal interface.  相似文献   

17.
Electrochemical impedance spectroscopy and XPS studies on AISI 304 stainless steel in naturally aerated 0.5 M H2SO4 solution were carried out at room temperature. The valuable model of the metal/solution interphase was established, and the reliable equivalent electrical circuits in the solution were presented. The analysis of the chemical composition of passive film on AISI 304 stainless steel was carried out by XPS. The passive film of AISI 304 stainless steel is composed of oxyhydroxides, Fe2O3, FeO, Cr2O3, NiO, sulfate, sulfite, and sulfide (FeS, NiS). It is reported that the ferrous sulfide film formed on AISI 304 stainless steel in the dilute sulfuric acid solution. The possible process in which sulfuric acid is reduced to sulfite and sulfide is proposed. The galvanic interaction of sulfide inclusions with the base alloy is introduced. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The effect of thermal annealing of poly(3-octylthiophene) (P3OT) coatings on the corrosion inhibition of stainless steel in an NaCl solution was investigated. P3OT was synthesized by direct oxidation of the 3-octylthiophene monomer with ferric chloride (FeCl3) as oxidant. P3OT films were deposited by drop-casting technique onto 304 stainless steel electrode (304SS). 304SS coated with P3OT films were thermally annealed during 30 h at different temperatures (55°C, 80°C, and 100°C). The corrosion resistance of stainless steel coated with P3OT in 0.5 M NaCl aqueous solution at room temperature was investigated by using potentiodynamic polarization curves, linear polarization resistance, and electrochemical impedance spectroscopy. The results indicated that the thermal treatment at 80°C and 100°C of P3OT films improved the corrosion resistance of the stainless steel in NaCl solution; the speed of corrosion diminished in an order of magnitude with regard to the 304SS. In order to study the temperature effect in the morphology of the coatings before and after the corrosive environment and correlate it with corrosion protection, atomic force microscopy and scanning electron microscopy were used. Morphological study showed that when the films are heated, the grain size increased and a denser surface was obtained, which benefited the barrier properties of the film.  相似文献   

19.
溶胶-凝胶法制备改性TiO2纳米薄膜及其防腐蚀性能   总被引:1,自引:0,他引:1  
应用溶胶-凝胶法和浸渍提拉技术在316L不锈钢表面分别制备TiO2纳米膜和 B-Fe-Ce改性的TiO2纳米膜. 采用场发射扫描电子显微镜(FE-SEM)、原子力显微镜(AFM)、拉曼光谱法和能量分散谱(EDS)对薄膜进行表征,通过电化学阻抗谱(EIS)和动电位阳极极化曲线的测试考察薄膜的耐蚀性及对不锈钢的保护性能. 结果表明:两种纳米薄膜均含锐钛矿型的TiO2纳米颗粒,纯TiO2纳米膜与改性后的纳米膜中颗粒直径分别约为15和10 nm. TiO2/316L不锈钢和 B-Fe-Ce-TiO2/316L不锈钢膜电极浸泡在0.5 mo.lL-1 NaCl溶液后,后者的电化学反应电阻较大,动电位阳极极化曲线的稳定钝化区较宽,击穿电位更高,说明改性的纳米膜的耐蚀性及其保护性能更好.  相似文献   

20.
Electrochemistry methods were used to investigate the influence of pH on the passive film and corrosion behavior of ultrahigh strength AM355 stainless steel in chloride-containing media. Analysis of the Pourbaix diagram indicates that AM355 stainless steel exhibits higher corrosion resistance in natural and near-natural environments than that in acidic and alkaline conditions. Electrochemistry measurements and composition analysis of the passive film show that pitting potential increased due to the enhanced repassivation capacity of AM355 stainless steel with increasing pH. The mixed MnS/oxide inclusions are the main pitting sensitive locations under all conditions. Morphological observations and energy-dispersive spectroscopy showed that the influence of the gap between the martensitic laths is significant with increasing pH. The inclusions, element concentrations, and microstructures weaken the resistance of ultrahigh-strength martensitic AM355 stainless steel against corrosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号