首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work a tachyonization of the ΛCDM model for a spatially flat Friedmann–Robertson–Walker space–time is proposed. A tachyon field and a cosmological constant are considered as the sources of the gravitational field. Starting from a stability analysis and from the exact solutions for a standard tachyon field driven by a given potential, the search for a large set of cosmological models which contain the ΛCDM model is investigated. By the use of internal transformations two new kinds of tachyon fields are derived from the standard tachyon field, namely, a complementary and a phantom tachyon fields. Numerical solutions for the three kinds of tachyon fields are determined and it is shown that the standard and complementary tachyon fields reproduces the ΛCDM model as a limiting case. The standard tachyon field can also describe a transition from an accelerated to a decelerated regime, behaving as an inflationary field at early times and as a matter field at late times. The complementary tachyon field always behaves as a matter field. The phantom tachyon field is characterized by a rapid expansion where its energy density increases with time.  相似文献   

2.
Dynamics of the tachyon gas is considered. It is interesting in the relation, that dark matter phenomenon is explained freely by existence of the tachyon gas. Tachyons have two unexpected properties: (1) a single tachyon cannot be detected and (2) the tachyon gas can be detected by its gravitational field. Although molecules (tachyons) of the tachyon gas moves with superluninal velocities, the mean motion of these molecules appears to be less, than the speed of the light. The tachyon gas properties differs from those of usual gas. The pressure of the tachyon gas is very high. It is not isotropic and depends on the gravitational potential. As a result the tachyon gas may form huge halos around galaxies. These halos have very large and almost constant density. This circumstance can explain the law of star velocities at the periphery of a galaxy. Properties of the tachyon gas admit one to consider it as a dark matter.  相似文献   

3.
S V Dhurandhar 《Pramana》1977,8(2):133-143
Investigations are made about the motion of a radially outward propagating tachyon which is created in the singularity with the white-hole. The problem of confinement or escape of such a tachyon from a white-hole is discussed. It is shown that the confinement or escape of the tachyon depends on the maximum radius of the white-hole and also on a parameterk (defined in the text) associated with the momentum of the tachyon. Also it is shown that when a tachyon escapes it always escapes beofre the white-hole has expanded to half its Schwarzschild radius.  相似文献   

4.
K S Virbhadra 《Pramana》1995,45(2):175-179
An axially symmetric exact solution of the Einstein-Maxwell equations is obtained and is interpreted to give the gravitational and electromagnetic fields of a charged tachyon. Switching off the charge parameter yields the solution for the uncharged tachyon which was earlier obtained by Vaidya. The null surfaces for the charged tachyon are discussed.  相似文献   

5.
Recently, Li and Liu have studied global monopole of tachyon in a four dimensional static space–time. We analyze the motion of massless and massive particles around tachyon monopole. Interestingly, for the bending of light rays due to tachyon monopole instead of getting angle of deficit we find angle of surplus. Also we find that the tachyon monopole exerts an attractive gravitational force towards matter.  相似文献   

6.
The motion of a tachyon in the empty Schwarzschild solution outside a massm is discussed. It is shown that a tachyon falling radially inwards never reaches the space-time singularity at the origin. Instead, it is bounced back at a point inside the Schwarzschild radius. The causal and non-causal aspects of such a bounce are considered. It is shown that a tachyon dropped from a radial co-ordinate <2.56m always airives before it went in whereas a tachyon dropped from a radial co-ordinate >3.27m always arrives later than its starting time. The more general case of a tachyon with a finite angular momentum is also analyzed. The possible astrophysical consequences of the presence of tachyons near condensed or collapsing objects and black holes are qualitatively discussed.  相似文献   

7.
We construct a tachyon teleparallel dark energy model for a homogeneous and isotropic flat universe in which a tachyon as a non-canonical scalar field is non-minimally coupled to gravity in the framework of teleparallel gravity. The explicit form of potential and coupling functions are obtained under the assumption that the Lagrangian admits the Noether symmetry approach. The dynamical behavior of the basic cosmological observables is compared to recent observational data, which implies that the tachyon field may serve as a candidate for dark energy.  相似文献   

8.
《Physics letters. [Part B]》2004,578(3-4):418-424
The interaction between the intersecting noncommutative D-branes (or membranes) is investigated within the M(atrix) theory. We first evaluate the spectrum of the off-diagonal fluctuation and see that there is a tachyon mode, which signals the instability of the intersecting branes. We next explain in detail how the tachyon modes (which are the off-diagonal fluctuations) can be combined with the original branes (which are the diagonal elements) to become a new diagonal matrix, which then represents the new recombined configurations after the tachyon condensation. The tachyon condensation configurations of the noncommutative branes we find are different from those of the commutative cases studied in the previous literatures.  相似文献   

9.
An elementary account on the origins of cosmic chaos in an open and multiply connected universe is given; there is a finite region in the open 3-space in which the world-lines of galaxies are chaotic, and the mixing taking place in this chaotic nucleus of the universe provides a mechanism to create equidistribution. The galaxy background defines a distinguished frame of reference and a unique cosmic time order; in this context superluminal signal transfer is studied. Tachyons are described by a real Proca field with negative mass square, coupled to a current of subluminal matter. Estimates on tachyon mixing in the geometric optics limit are derived. The potential of a static point source in this field theory is a damped periodic function. We treat this tachyon potential as a perturbation of the Coulomb potential, and study its effects on energy levels in hydrogenic systems. By comparing the induced level shifts to high-precision Lamb shift measurements and QED calculations, we suggest a tachyon mass of 2.1 keV/c2 and estimate the tachyonic coupling strength to subluminal matter. The impact of the tachyon field on ground state hyperfine transitions in hydrogen and muonium is investigated. Bounds on atomic transition rates effected by tachyon radiation as well as estimates on the spectral energy density of a possible cosmic tachyon background radiation are derived. Received 13 August 1999 and Received in final form 7 February 2000  相似文献   

10.
We derive effective actions for "spacelike branes" (S-branes) and find a solution describing the formation of fundamental strings in the rolling tachyon background. The S-brane action is a Dirac-Born-Infeld action for Euclidean world volumes defined in the context of time-dependent tachyon condensation of non-BPS (Bogomol'nyi-Prasad-Sommerfield) branes. It includes gauge fields and, in particular, a scalar field associated with translation along the time direction. We show that the BIon spike solutions constructed in this system correspond to the production of a confined electric flux tube (a fundamental string) at late time of the rolling tachyon.  相似文献   

11.
We investigate the tachyon scalar filed model of dark energy in the framework of Gauss-Bonnet cosmology. We consider a spatially non-flat universe containing interacting tachyon dark energy with pressureless dark matter. We obtain the equation of state and deceleration parameters. We also reconstruct the potential and the dynamics for the tachyon scalar field model, which describe accelerated expansion of the universe.  相似文献   

12.
Motivated by recent work of Sheykhi (Phys. Lett. B 682:329, 2010), we generalize this work to agegraphic tachyon models of dark energy with entropy correction terms arising from loop quantum gravity. We establish a connection between the entropy-corrected agegraphic dark energy and the tachyon scalar field in a universe with spacial curvature and reconstruct the potential and the dynamics of the tachyon scalar field which describe the tachyon cosmology. The cosmological implications of the entropy-corrected agegraphic dark energy models are also discussed.  相似文献   

13.
K S Virbhadra 《Pramana》1993,40(4):273-275
An exact solution of Einstein’s equations is interpreted as describing the gravitational field of a tachyon in a de Sitter universe. Switching off the cosmological constant yields the gravitational field of a tachyon in flat spacetime background.  相似文献   

14.
We investigate the problem of perturbative reheating and its effects on the evolution of the curvature perturbations in tachyonic inflationary models. We derive the equations governing the evolution of the scalar perturbations for a system consisting of a tachyon and a perfect fluid. Assuming the perfect fluid to be radiation, we solve the coupled equations for the system numerically and study the evolution of the perturbations from the sub-Hubble to the super-Hubble scales. In particular, we analyze the effects of the transition from tachyon driven inflation to the radiation dominated epoch on the evolution of the large scale curvature and non-adiabatic pressure perturbations. We consider two different potentials to describe the tachyon and study the effects of two possible types of decay of the tachyon into radiation. We plot the spectrum of curvature perturbations at the end of inflation as well as at the early stages of the radiation dominated epoch. We find that reheating does not affect the amplitude of the curvature perturbations in any of these cases. These results corroborate similar conclusions that have been arrived at earlier based on the study of the evolution of the perturbations in the super-Hubble limit. We illustrate that, before the transition to the radiation dominated epoch, the relative non-adiabatic pressure perturbation between the tachyon and radiation decays in a fashion very similar to that of the intrinsic entropy perturbation associated with the tachyon. Moreover, we show that, after the transition, the relative non-adiabatic pressure perturbation dies down extremely rapidly during the early stages of the radiation dominated epoch. It is these behavior which ensure that the amplitude of the curvature perturbations remain unaffected during reheating. We also discuss the corresponding results for the popular chaotic inflation model in the case of the canonical scalar field.  相似文献   

15.
A particular class of space-time, with a tachyon field, $\phi $ , and a barotropic fluid constituting the matter content, is considered herein as a model for gravitational collapse. For simplicity, the tachyon potential is assumed to be of inverse square form i.e., $V(\phi )\sim \phi ^{-2}$ . Our purpose, by making use of the specific kinematical features of the tachyon, which are rather different from a standard scalar field, is to establish the several types of asymptotic behavior that our matter content induces. Employing a dynamical system analysis, complemented by a thorough numerical study, we find classical solutions corresponding to a naked singularity or a black hole formation. In particular, there is a subset where the fluid and tachyon participate in an interesting tracking behaviour, depending sensitively on the initial conditions for the energy densities of the tachyon field and barotropic fluid. Two other classes of solutions are present, corresponding respectively, to either a tachyon or a barotropic fluid regime. Which of these emerges as dominant, will depend on the choice of the barotropic parameter, $\gamma $ . Furthermore, these collapsing scenarios both have as final state the formation of a black hole.  相似文献   

16.
We extend Wigner's work on the wave equations for integer-spin particles to the spinorial case. A recent suggestion that the neutrino might be a fermionic tachyon is examined. We point out that a four-component Dirac equation cannot describe a fermionic tachyon.  相似文献   

17.
《Nuclear Physics B》1995,442(3):494-532
We derive an explicit formula for the evaluation of the classical closed string action for any off-shell string field, and for the calculation of arbitrary off-shell amplitudes. The formulae require a parametrization, in terms of some moduli space coordinates, of the family of local coordinates needed to insert the off-shell states on Riemann surfaces. We discuss in detail the evaluation of the tachyon potential as a power series in the tachyon field. The expansion coefficients in this series are shown to be geometrical invariants of Strebel quadratic differentials whose variational properties imply that closed string polyhedra, among all possible choices of string vertices, yield a tachyon potential which is as small as possible order by order in the string coupling constant. Our discussion emphasizes the geometrical meaning of off-shell amplitudes.  相似文献   

18.
In this paper we consider a correspondence between the interacting new agegraphic dark energy density and tachyon energy density in non-flat universe. Then we reconstruct the potential and the dynamics of the tachyon field which describe tachyon cosmology.  相似文献   

19.
Physical arguments stemming from the theory of black-hole thermodynamics are used to put constraints on the dynamics of closed-string tachyon condensation in Scherk–Schwarz compactifications. A geometrical interpretation of the tachyon condensation involves an effective capping of a noncontractible cycle, thus removing the very topology that supports the tachyons. A semiclassical regime is identified in which the matching between the tachyon condensation and the black-hole instability flow is possible. We formulate a generalized correspondence principle and illustrate it in several different circumstances: an Euclidean interpretation of the transition from strings to black holes across the Hagedorn temperature and instabilities in the brane-antibrane system.  相似文献   

20.
We review the tachyon model derived from the dynamics of a 3-brane moving in the AdS5 bulk. The bulk geometry is based on the Randall-Sundrum II model extended to include the radion. The effective tachyon Lagrangian is modified due to the back-reaction of the brane on the bulk geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号