首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermoresponsive hydrogels based on N-isopropylacrylamide, N-hydroxymethylacrylamide, and 2-hydroxyethyl methacrylate, poly(NIPAM–co-NHMAAm–co-HEMA), have been synthesized and their swelling—deswelling behavior studied as a function of NIPAM concentration, NIPAM/NHMAAm and NIPAM/HEMA mole ratio, and total monomer concentration. Copolymers varying in composition have been obtained by redox copolymerization of these three monomers. Temperature has been changed in the ranges from 4 to 70 °C at fixed pH and total ionic strength. Equilibrium swelling ratio, dynamic swelling ratio, and dynamic deswelling ratio were evaluated for all hydrogel systems. The equilibrium swelling ratios of the copolymeric gels decrease with increasing NHMAAm and HEMA content. The formation of the intermolecular hydrogen bonding between hydroxyl and amido groups decreases the hydrophilic group numbers of the gel and the affinity of the gel towards water decreases. The copolymer gels also showed rapid volume transitions with time. The time required for equilibrium shrinking increased with increasing NHMAAm and HEMA content in the gel.  相似文献   

2.
Aqueous gel deswelling rates for copolymer hydrogels comprising N‐isopropylacrylamide (IPAAm) and 2‐carboxyisopropylacrylamide (CIPAAm) in response to increasing temperatures were investigated. Compared with pure IPAAm‐based gels, IPAAm–CIPAAm gels shrink very rapidly in response to small temperature increases across their lower critical solution temperature (their volume is reduced by five‐sixths within 60 s). Shrinking rates for these hydrogels increase with increasing CIPAAm content. In contrast, structurally analogous IPAAm–acrylic acid (AAc) copolymer gels lose their temperature sensitivity with the introduction of only a few mole percent of AAc. Additionally, deswelling rates of IPAAm–AAc gels decrease with increasing AAc content. These results indicate that IPAAm–CIPAAm copolymer gels behave distinctly from IPAAm–AAc systems even if both comonomers, CIPAAm and AAc, possess carboxylic acid groups. Thus, we propose that the sensitive deswelling behavior for IPAAm–CIPAAm gels results from strong hydrophobic chain aggregation maintained between network polymer chains due to the similar chemical structures of CIPAAm and IPAAm. This structural homology facilitates aggregation of chain isopropylamide groups for both IPAAm and CIPAAm sequences with increasing temperature. The incorporation of AAc, however, shows no structural homology to IPAAm, inhibiting chain aggregation and limiting collapse. A functionalized temperature‐sensitive poly(N‐isopropylacrylamide) hydrogel containing carboxylic acid groups is possible with CIPAAm, producing rapid and large volume changes in response to smaller temperature changes. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 335–342, 2001  相似文献   

3.
A series of amino-acid-based amphiphilic diblock copolymer nano-objects having different morphologies were developed by reversible addition–fragmentation chain-transfer (RAFT) dispersion polymerization of styrene (St) in methanol. This was mediated by six different hydrophilic poly(N-acryloyl amino acid) macro-chain transfer agents (CTAs), including three carboxylic-acid-containing ones, poly(N-acryloyl-l -proline) (PAProOH), poly(N-acryloyl-4-trans-hydroxy-l -proline) (PAHypOH), and poly(N-acryloyl-l -threonine) (PAThrOH) prepared by RAFT polymerization, and their methyl ester forms, PAProOMe, PAHypOMe, and PAThrOMe. The effects of polymerization conditions on RAFT dispersion polymerization of St using a dithiocarbamate-terminated PAProOH was investigated. A systematic study of the effects of monomer conversion and concentration afforded the formation of various morphologies (i.e., spheres, worms, and vesicles). The effects of hydrogen-bonding and ionic interactions of the macro-CTAs on the assembled structures of the nano-objects were evaluated using six different macro-CTAs. Transforming the products from methanol to water via dialysis produced amino-acid-based block copolymer nano-objects, exhibiting pH-responsive morphological change, in aqueous solution.  相似文献   

4.
Novel polynorbornene (PNB)‐polyimide (PI) copolymers were synthesized based on poly(N‐phenyl‐exo‐norbornene‐5,6‐dicarboximide) (PPhNI) and chlorinated PI (BPDA/TCDB). Polynorbornene copolymers (PNCs) with diverse compositions of anhydride were synthesized via ring opening metathesis polymerization (ROMP) of N‐phenyl‐exo‐norbornene‐5,6‐dicarboximide (PhNI) and exo‐7‐oxanorbornene‐5,6‐dicarboxylic anhydride(exo‐NA), followed by copolymerization through a reaction with aromatic dianhydride (3,3′,4,4′‐biphenyltetra‐carboxylic dianhydride, BPDA) and tetrachlorinated diamine (2,2′,5,5′‐tetrachlorobenzidine, TCDB). The copolymer (PNIC) films exhibited good optical transparency with a transmittance of around 70% at 400 nm and a good thermal stability with a glass transition temperature at 276–300 °C. These flexible films also resisted most organic solvents and chemicals, such as methanol, acetone, tetrahydrofuran, N‐methylpyrrolidone, ethyl acetate, hydrochloric acid, sodium hydroxide, and hydrogen peroxide, etc. Indium tin oxide (ITO) coated thin films were prepared at various substrate deposition temperatures with a radio frequency (r.f.) planar magnetron sputtering system. The ITO thin films that were deposited onto the PNIC copolymer substrates had good electrical and optical properties. An organic light‐emitting device (OLED) was fabricated using the PNIC copolymer substrate with a structure of PNIC08/ ITO (anode)/hole‐transporting layer (HTL)/emitting & electron‐transporting layer (EM&ETL)/aluminum (cathode). The flexible OLED fabricated on the ITO‐grown PNIC substrate exhibited a performance that was comparable to corresponding ITO‐grown glass substrates. Therefore, the ITO‐grown PNIC substrate could possibly be a promising candidate as a substrate for flexible displays. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1806–1814, 2010  相似文献   

5.
Swelling behaviour of poly(N-vinylcaprolactam) (PVC) and poly(N-vinylcaprolactam-co-itaconic acid) (P(VC-co-IA)) gels was investigated in different solvents (water, ethanol, methanol, isopropyl alcohol (IPA), chloroform, toluene, acetone) and in binary solvent mixtures (ethanol/chloroform, ethanol/methanol, IPA/chloroform, ethanol/water, IPA/water). Gels were synthesised in ethanol by the free radical cross-linking polymerisation method at 60°C for 24 h in the presence of azo-bis(isobutyronitrile) and allyl methacrylate as the initiator and cross-linker, respectively. And also, ethanol/distilled water mixture (?r = 4:1) was used as the synthesis medium to determine its effect on the swelling of gels. It was found that the presence of water in the synthesis medium significantly affected the equilibrium swelling value (ESV) and the swelling tendency of gels both in solvents and in solvent mixtures. All gels synthesised in ethanol showed the highest swelling in chloroform. The gels synthesised in the ethanol/water mixture displayed different swelling behaviour. In this case, while chloroform was still valid for maximum swelling of PVC, P(VC-co-IA) had the highest swelling in methanol. Solubility parameters of gels were predicted by the van Krevelen-Hoftyzer (VKH) and Hoy methods (group contribution methods) and theoretical calculations verified the experimental swelling order.  相似文献   

6.
This study aimed to investigate the effect of COOH group distribution within a polymer network having amide groups, with which the COOH could form hydrogen bonds. We employed here two polyelectrolyte gels composed of N-isopropylacrylamide (NIPA) networks, either copolymerized with acrylic acid (AA) or within which poly(acrylic acid) (PAA) was entrapped. Both gels (AA–NIPA ∼ 1:4 mol/mol) were prepared by aqueous red-ox polymerization with N,N’-methylenebisacrylamide as the cross-linker. Finely divided gels in NaCl solutions (0.025 and 0.1 M) were titrated with NaOH and back-titrated with HCl at 25 °C. The results of the copolymer gel (CG) agreed well with those of a linear copolymer and a nanoscale gel which had a similar AA content to CG. However, marked differences were observed in the titration behaviors of the AA-copolymerized and PAA-entrapped gels, mainly due to the hydrogen bonding between the entrapped PAA chain and its surrounding NIPA network.  相似文献   

7.
Heterogeneous hydrogels were prepared by -ray irradiation of aqueous solutions of N-isopropylacrylamide (NIPAAm) and acrylic acid (AAc) having various compositions above the lower critical solution temperature. The structures of the poly(N-isopropylacrylamide) (PNIPAAm) gel and poly(NIPAAm-co-AAc) gels in both their highly hydrated and their natural states were observed by environmental scanning electron microscopy. The heterogeneous structures of the homopolymer gel and the copolymer gels whose AAc contents were between 10–50% consisted of interconnected microspheres. In the copolymer gel with a high AAc content, the structure became a largely interconnected one which lacked micro-droplets. The hydrophobic interaction caused by hydrogen bonding between the unionized carboxylic acid groups of AAc and the amide groups of NIPAAm, the rates of polymerization, and the aggregation rates play important roles in the formation of interconnected microsphere gel structures.  相似文献   

8.
In this work, semi‐interpenetrating gels of poly(N‐isopropyl acrylamide) and methylcellulose were successfully synthesized by using the Frontal Polymerization (FP) technique. The gels were obtained in the presence of dimethyl sulfoxide and trihexyltetradecylphosphonium persulfate, as polymerization solvent and radical initiator, respectively, hence avoiding the formation of bubbles during polymerization. Then, some of the gels containing dimethyl sulfoxide were thoroughly washed with water, hence obtaining the corresponding hydrogels. The effects of the ratio between poly(N‐isopropyl acrylamide) and methylcellulose, the amount of crosslinker and solvent medium (i.e., dimethyl sulfoxide and water) were thoroughly studied, assessing the influence of temperature and velocity of FP fronts on the glass transition temperature values (dried samples), on the swelling behavior and on the dynamic‐mechanical properties (gels swollen both in water and dimethyl sulfoxide). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 437–443  相似文献   

9.
The phase behavior of poly(N‐tertbutylacrylamide‐co‐acrylamide) (PNTBAM) in pure water and mixture of water–methanol is studied at different temperatures. The different compositions of PNTBAM are prepared by free‐radical polymerization technique and their phase behavior is studied by turbidimetry. The effects of copolymer and solvent composition on the phase behavior of the copolymers are discussed. It has been suggested that the inhomogenities in polymer chains are responsible for lowering the rate of phase transition by increasing the N‐tertbutylacrylamide (NTBAM) and methanol contents in copolymer and mixture, respectively. For the first time we have revealed that there are second‐order binary interactions in the water–methanol which are dominant in the special range of copolymer composition. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 455–462, 2009  相似文献   

10.
The micellar macro‐RAFT agent‐mediated dispersion polymerization of styrene in the methanol/water mixture is performed and synthesis of temperature‐sensitive ABC triblock copolymer nanoparticles is investigated. The thermoresponsive diblock copolymer of poly(N,N‐dimethylacrylamide)‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine] trithiocarbonate forms micelles in the polymerization solvent at the polymerization temperature and, therefore, the dispersion RAFT polymerization undergoes as similarly as seeded dispersion polymerization with accelerated polymerization rate. With the progress of the RAFT polymerization, the molecular weight of the synthesized triblock copolymer of poly(N,N‐dimethylacrylamide)‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine]‐b‐polystyrene linearly increases with the monomer conversion, and the PDI values of the triblock copolymers are below 1.2. The dispersion RAFT polymerization affords the in situ synthesis of the triblock copolymer nanoparticles, and the mean diameter of the triblock copolymer nanoparticles increases with the polymerization degree of the polystyrene block. The triblock copolymer nanoparticles contain a central thermoresponsive poly [N‐(4‐vinylbenzyl)‐N,N‐diethylamine] block, and the soluble‐to‐insoluble ‐‐transition temperature is dependent on the methanol content in the methanol/water mixture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2155–2165  相似文献   

11.
The phenolic compounds p-hydroxyacetophenone and catechin have been extracted from Norway spruce needles with pure methanol, 80 and 50% (v/v) aqueous methanol, pure acetonitrile, 80% (v/v) aqueous acetonitrile, and pure water. Extraction efficiency of the individual solvents was compared. Although 80% aqueous methanol is the solvent most frequently used for extraction of soluble phenolic compounds from needles, it was found that pure methanol is a more suitable extraction solvent. Surprisingly, a two-step procedure based on the extraction of crushed needles with water then re-extraction with methanol proved a good alternative to direct extraction with methanol. Extraction of uncrushed spruce needles might indicate that relatively more p-hydroxyacetophenone than catechin was located in the surface layer of the needle.  相似文献   

12.
The copolymerization of divinylbenzene (DVB) and N‐isopropylacrylamide (NIPAm) with dimethyl 2,2′‐azobisisobutyrate of a concentration as high as 0.50 mol/L proceeded homogeneously without any gelation at 80 °C in N,N‐dimethylformamide, where the concentrations of DVB and NIPAm were 0.15 and 0.50 mol/L. The copolymer yield increased with time and leveled off over 50 min. Although DVB was consumed more rapidly than NIPAm, both comonomers were completely consumed in 50 min. The homogeneous polymerization system at 80 °C involved electron spin resonance‐observable propagating polymer radicals, the total concentration of which increased with time. The resulting copolymer was soluble in tetrahydrofuran, chloroform, acetone, ethyl acetate, acetonitrile, N,N‐dimethylformamide, dimethyl sulfoxide, and methanol, but insoluble in benzene, n‐hexane, and water. The copolymer showed an upper critical solution temperature (50 °C on cooling) in a methanol–water [11:3 (v/v)] mixture. Dimethyl 2,2′‐azobisisobutyrate fragments as high as 37–45 mol % were incorporated as terminal groups in the copolymers through initiation and primary radical termination. The contents of DVB and NIPAm were 10–30 mol % and 30–50 mol %, respectively. The intrinsic viscosity of the copolymer was very low (0.09 dL/g) at 30 °C in tetrahydrofuran despite high weight‐average molecular weight (1.2 × l06 by multi‐angle laser light scattering). These results indicate that the copolymer was of hyperbranched structure. By transmission electron microscopy observation, the individual copolymer molecules were visualized as nanoparticle of 6–20 nm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1609–1617, 2004  相似文献   

13.
The conjugated polyelectrolyte (CPE) poly{9,9′-bis[6″-(N,N,N-trimethylammonium)-hexylfluorene-alt-co-phenylene] dibromide} (PFPN+Br) demonstrates a high solubility in methanol in comparison to other more hydrophilic or hydrophobic solvents. We have employed a combination of pulsed-field-gradient-NMR, photoluminescence (PL), and Raman spectroscopy to establish the conformation and aggregation behavior of PFPN+Br in methanol, with the aim to attain information on how to design CPEs with a high solubility in a preferred solvent. We find that the diffusion coefficient and PL spectrum of PFPN+Br, as well as the Raman-active methyl rocking mode of methanol, all exhibit a strong dependence on PFPN+Br concentration. We rationalize our findings with a model in which PFPN+Br forms aggregates via π–π interactions between main-chain segments, while the ionic side chains are surrounded and electrostatically screened by the methanol solvent. Accordingly, the notably high solubility of PFPN+Br in methanol is rationalized by favorable interactions between the ionic side chains and the methanol molecules. We propose that an appropriate design of a high-solubility CPE should consider a matching of the mixed hydrophobic/hydrophilic character of the ionic side chain with that of the preferred solvent.  相似文献   

14.
The enthalpies of solution of N,N′-dimethylethyleneurea (1,3-dimethyl-2-imidazolidinone) in water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and t-butanol (2-methyl-2-propanol) were measured calorimetrically at 298.15 K. For comparison purposes, the previous data on enthalpic effects of 1,1,3,3-tetramethylurea dissolution (solvation) in the same solvents were analyzed. It has been concluded that the intramolecular cyclization of tetramethylurea, to form dimethylethyleneurea, results in strengthening of the solute solvation and this tendency is more pronounced in a non-aqueous (alcoholic) medium.  相似文献   

15.
A new thermally switchable molecularly imprinted monolith for the selective capture and release of proteins has been designed. First, a generic poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) monolith reacted with ethylenediamine followed by functionalization with 2‐bromoisobutyryl bromide to introduce the initiator for atom transfer radical polymerization. Subsequently, a protein‐imprinted poly(N‐isopropylacrylamide) layer was grafted onto the surface of the monolithic matrix by atom transfer radical polymerization. Scanning electron microscopy and energy‐dispersive X‐ray spectroscopy of the cross‐sections of imprinted monoliths confirmed the formation of dense poly(N‐isopropylacrylamide) brushes on the pore surface. The imprinted monolith exhibited high specificity and selectivity toward its template protein myoglobin over competing proteins and a remarkably large maximum adsorption capacity of 1641 mg/g. Moreover, this “smart” imprinted monolith featured thermally responsive characteristics that enabled selective capture and easy release of proteins triggered only by change in temperature with water as the mobile phase and avoided use of stronger organic solvents or change in ionic strength and pH.  相似文献   

16.
The solution, gelation, and morphological properties of monodisperse aromatic polyamide diblock copolymers consisting of poly(p‐benzamide) (PpBA), poly(m‐benzamide) (PmBA), and poly(N‐octyl m‐benzamide) (POmBA) were investigated. The block copolymers of these polymers, PpBA‐block‐POmBA and PmBA‐block‐POmBA, formed spherical micelles or amorphous aggregates in many solvents in addition to physical gels at concentrations higher than 5 wt %. A temperature‐induced sol‐gel transition was also exhibited for PpBA‐block‐POmBA in solvents with high boiling points such as N,N‐dimethylacetamide and N‐methylpyrrolidone (NMP), although the transition was not entirely thermoreversible; the transition temperature decreased by annealing at ~80 °C. Dynamic light scattering measurements of the PpBA‐block‐POmBA/NMP solutions revealed that metastable micelles in the sol state reorganized into smaller micelles upon annealing at 90 °C. The block copolymer, which forms strong associations, exhibited some transient structure as indicated by the need to sufficiently anneal the solution to reach equilibrium. Network‐like patterns with characteristic length of ~10 μm appeared on the gel surfaces upon evaporation of volatile solvents such as dichloromethane and chloroform, in which the copolymers were observed to aggregate. The unique properties of the copolymers originate from interactions between the highly polar N? H aromatic polyamide blocks. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1732–1739, 2010  相似文献   

17.
We have studied the self‐assembly of the ABA triblock copolymer (P4VP‐b‐PS‐b‐P4VP) in dilute solution by using binary block‐selective solvents, that is, water and methanol. The triblock copolymer was first dissolved in dioxane to form a homogeneous solution. Subsequently, a given volume of selective solvent was added slowly to the solution to induce self‐assembly of the copolymer. It was found that the copolymer (P4VP43b‐PS366b‐P4VP43) tended to form spherical aggregate or bilayer structure when we used methanol or water as the single selective solvent, respectively. However, the aggregates with various nanostructures were obtained by using mixtures of water and methanol as the block‐selective solvents. The aggregate structure changed from sphere to rod, vesicle, and then to bilayer by changing water content in the block‐selective solvent from 0 to 100%. Moreover, it was found that the vesicle size could be well controlled by changing the copolymer content in the solution. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1536–1545, 2008  相似文献   

18.
Electroactive conducting copolymers of aniline (ANI) and o-aminophenol (OAP) and two-layered poly(o-aminophenol) (POAP)/polyaniline (PANI) composites were prepared in aqueous acidic solution by electrode potential cycling. Copolymerization was carried out at different feed concentrations of OAP and ANI on a gold electrode. A strong inhibition of electropolymerization was found at a high molar fraction of OAP in the feed. The copolymers showed good adherence on the electrode surface and gave a redox response up to pH=10.0. Two transitions were observed in the in situ conductivities of the copolymers (as with PANI), but the conductivities were lower by 2.5–3 orders of magnitude as compared to PANI. Electrosynthesis of PANI on POAP modified electrodes showed copolymer formation after reaction initiation and finally formation of a PANI layer at the copolymer/solution interface. The ‘memory effect’ of the bilayer structures of both polymers was discussed in terms of protonation/deprotonation and anion consumption taking place during redox processes of both polymers.  相似文献   

19.
We report a new way of developing ion gels through the self-assembly of a triblock copolymer in a room-temperature ionic liquid. Transparent ion gels were achieved by gelation of a poly(styrene-block-ethylene oxide-block-styrene) (SOS) triblock copolymer in 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) with as low as 5 wt % SOS triblock copolymer. The gelation behavior, ionic conductivity, rheological properties, and microstructure of the ion gels were investigated. The ionic conductivity of the ion gels is only modestly affected by the triblock copolymer network. Its temperature dependence nearly tracks that of the bulk ionic liquid viscosity. The ion gels are thermally stable up to at least 100 degrees C and possess significant mechanical strength. The results presented here suggest that triblock copolymer gelation is a promising way to develop highly conductive ion gels and provides many advantages in terms of variety and processing.  相似文献   

20.
The exciplex formation in 9-vinylphenanthrene-p-N,N-dimethylaminostyrene copolymers, its characteristics, and the electron transfer process in polar solvents were studied. The copolymer exhibited a more intense intramolecular exciplex fluorescence than the low-molecular-weight model system, phenanthrene-N,N-dimethylaniline, in which the intermolecular exciplex formation occurred. Intensities of the exciplex fluorescence, which were unchanged regardless of the copolymer composition, led us to speculate that the efficient energy migration takes place from an excited phenanthrene unit to an exciplex forming site on the polymer chain. The electron transfer in the copolymer-p-dicyanobenzene system was studied in polar media. The formation of p-dicyanobenzene anion radical was measured by flash photolysis and electron spin resonance (ESR). p-Dicyanobenzene anion radical was generated by the electron transfer process via exciplex and the direct electron transfer process from the excited phenanthrene unit in the copolymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号