首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of accurate quartic force fields together with vibrational configuration interaction recently predicted gas phase fundamental vibrational frequencies of the trans-HOCO radical to within 4 cm(-1) of experimental results for the two highest frequency modes. Utilizing the same approach, we are providing a full list of fundamental vibrational frequencies and spectroscopic constants for the cis-HOCO system in both radical and anionic forms. Our predicted geometrical parameters of the cis-HOCO radical match experiment and previous computation to better than 1% deviation, and previous theoretical work agrees equally well for the anion. Correspondence between vibrational perturbation theory and variational vibrational configuration interaction for prediction of the frequencies of each mode is strong, better than 5 cm(-1), except for the torsional motion, similar to what has been previously identified in the trans-HOCO radical. Among other considerations, our results are immediately applicable to dissociative photodetachment experiments which initially draw on the cis-HOCO anion since it is the most stable conformer of the anion and is used to gain insight into the portion of the OH + CO potential surface where the HOCO radical is believed to form, and we are also providing highly accurate electron binding energies relevant to these experiments.  相似文献   

2.
Only one fundamental vibrational frequency of protonated carbon dioxide (HOCO(+)) has been experimentally observed in the gas phase: the ν(1) O-H stretch. Utilizing quartic force fields defined from CCSD(T)/aug-cc-pVXZ (X = T,Q,5) complete basis set limit extrapolated energies modified to include corrections for core correlation and scalar relativistic effects coupled to vibrational perturbation theory and vibrational configuration interaction computations, we are predicting the full set of gas phase fundamental vibrational frequencies of HOCO(+). Our prediction of ν(1) is within less than 1 cm(-1) of the experimental value. Our computations also include predictions of the gas phase fundamental vibrational frequencies of the deuterated form of the cation, DOCO(+). Additionally, other spectroscopic constants for both systems are reported as part of this study, and a search for a cis-HOCO(+) minimum found no such stationary point on the potential surface indicating that only the trans isomer is stable.  相似文献   

3.
Quantum chemistry calculations at the density functional theory (DFT) (B3LYP), MP2, QCISD, QCISD(T), and CCSD(T) levels in conjunction with 6-311++G(2d,2p) and 6-311++G(2df,2p) basis sets have been performed to explore the binding energies of open-shell hydrogen bonded complexes formed between the HOCO radical (both cis-HOCO and trans-HOCO) and trans-HCOOH (formic acid), H(2)SO(4) (sulfuric acid), and cis-cis-H(2)CO(3) (carbonic acid). Calculations at the CCSD(T)∕6-311++G(2df,2p) level predict that these open-shell complexes have relatively large binding energies ranging between 9.4 to 13.5 kcal∕mol and that cis-HOCO (cH) binds more strongly compared to trans-HOCO in these complexes. The zero-point-energy-corrected binding strengths of the cH?Acid complexes are comparable to that of the formic acid homodimer complex (~13-14 kcal∕mol). Infrared fundamental frequencies and intensities of the complexes are computed within the harmonic approximation. Infrared spectroscopy is suggested as a potential useful tool for detection of these HOCO?Acid complexes in the laboratory as well as in various planetary atmospheres since complex formation is found to induce large frequency shifts and intensity enhancement of the H-bonded OH stretching fundamental relative to that of the corresponding parent monomers. Finally, the ability of an acid molecule such as formic acid to catalyze the inter-conversion between the cis- and trans-HOCO isomers in the gas phase is also discussed.  相似文献   

4.
We report vibrationally resolved photoelectron spectra of internally cold HOCO(-) and DOCO(-) anions at wavelengths near and well above the detachment threshold. These spectra are dominated by a strong Franck-Condon progression of three low-energy modes of the cis isomer, the first gas-phase measurement of these vibrations. Using highly resolved, near-threshold spectra we are able to reassign the electron affinities (EAs) of cis- and trans-HOCO to 1.51 ± 0.01 and 1.37 ± 0.01 eV, respectively. Using these EAs, well depths with respect to OH + CO are determined to be 1.07 ± 0.02 eV for trans-HOCO and 0.99 ± 0.02 eV for cis-HOCO. High-level ab initio calculations show excellent agreement with all experimental results. These values will be of direct use in thermochemical calculations and will help to aid in the identification of the HOCO radical in complex reactions.  相似文献   

5.
The Fourier transform infrared (FTIR) and FT-Raman spectra of 5-chloro-2-hydroxybenzamide (5CBA) and 5-chloro-2-hydroxybenzoic acid (5C2HBA) have been recorded in the range 4000-400 and 4000-100 cm(-1), respectively. The complete vibrational fundamental modes of the compounds were assigned and analysed using the observed FTIR and FT-Raman data. The vibrational frequencies determined experimentally were compared with the theoretical wavenumbers calculated from ab initio HF and DFT-B3LYP gradient methods employing 6-31G** and 6-311++G** basis sets. The effect of halogen, hydroxyl groups and hydrogen bonding on the characteristic frequencies of the -COOH and -CONH2 group frequencies have been investigated. In 5CBA and 5C2HBA intramolecular hydrogen bond between a hydroxyl group and CO group makes a six membered ring, which causes the O?H interaction onto the resonance of the benzene ring. Comparison of the positions of the ν(OH) bands shows the ν(OH) band of 5CBA is located at considerably higher frequency which confirms a weaker hydrogen bond than in 5C2HBA.  相似文献   

6.
Lester MI  Pond BV  Marshall MD  Anderson DT  Harding LB  Wagner AF 《Faraday discussions》2001,(118):373-85; discussion 419-31
A hydrogen-bonded complex composed of the OH and CO reactants has been identified along the OH + CO-->HOCO reaction pathway. IR action spectroscopy in the OH overtone region has been used to examine the vibrational modes of the linear OH-CO complex, including intermolecular bending modes that probe portions of the reaction path leading to HOCO. The spectroscopic measurements have accessed highly excited intermolecular levels, with energies up to 250 cm-1 above the zero-point level, which lie in close proximity to the transition state for reaction. The OH-CO binding energy, D0 < or = 430 cm-1, has also been established from the quantum state distribution of the OH fragments following vibrational predissociation of the OH-CO complex. Complementary electronic structure calculations have been performed to characterize the OH-CO and OH-OC complexes, the transition state for HOCO formation, and the direct reaction path that connects the experimentally observed OH-CO complex to the HOCO intermediate.  相似文献   

7.
Peroxynitrous acid (HOONO) is generated in a pulsed supersonic expansion through recombination of photolytically generated OH and NO(2) radicals. A rotationally resolved infrared action spectrum of HOONO is obtained in the OH overtone region at 6971.351(4) cm(-1) (origin), providing definitive spectroscopic identification of the trans-perp (tp) conformer of HOONO. Analysis of the rotational band structure yields rotational constants for the near prolate asymmetric top, the ratio of the a-type to c-type components of the transition dipole moment for the hybrid band, and a homogeneous linewidth arising from intramolecular vibrational energy redistribution and/or dissociation. The quantum state distribution of the OH (nu=0,J(OH)) products from dissociation is well characterized by a microcanonical statistical distribution constrained only by the energy available to products, 1304+/-38 cm(-1). This yields a 5667+/-38 cm(-1) [16.2(1) kcal mol(-1)] binding energy for tp-HOONO. An equivalent available energy and corresponding binding energy are obtained from the highest observed OH product state. Complementary high level ab initio calculations are carried out in conjunction with second-order vibrational perturbation theory to predict the spectroscopic observables associated with the OH overtone transition of tp-HOONO including its vibrational frequency, rotational constants, and transition dipole moment. The same approach is used to compute frequencies and intensities of multiple quantum transitions that aid in the assignment of weaker features observed in the OH overtone region, in particular, a combination band of tp-HOONO involving the HOON torsional mode.  相似文献   

8.
The mechanism of the reaction between OH radicals and CO is discussed in relation to recent experiments which indicate that the rate constant, k = ?(dln[OH]/dt)/[CO], depends on total pressure. It is shown that this observation is quite consistent with the known spectroscopic and thermodynamic properties of the HOCO radical, as long as the dissociation of HOCO to H + CO2 is no faster than that to OH + CO.  相似文献   

9.
An experimental study of the dissociative photodetachment (DPD) dynamics of HOCO(-) and DOCO(-) at a photon energy of 3.21 eV has been carried out to probe the potential energy surface of the HOCO free radical and the dynamics of the OH+CO-->H+CO(2) reaction. These photoelectron-photofragment coincidence experiments allow the identification of photodetachment processes leading to the production of stable HOCO free radicals and both the H+CO(2) and OH+CO dissociation channels on the neutral surface. Isotopic substitution by deuterium in the parent ion is observed to reduce the product branching ratio for the D+CO(2) channel, consistent with tunneling playing a role in this dissociation pathway. Other isotope effects on the detailed partitioning of kinetic energy between photoelectrons and photofragments are also discussed. The results are compared to recent theoretical predictions of this DPD process, and evidence for the involvement of vibrationally excited HOCO(-) anions is discussed.  相似文献   

10.
The equilibrium structure and potential energy surface of calcium dihydride, CaH(2), have been determined from large-scale ab initio calculations using the coupled-cluster method, CCSD(T), in conjunction with basis sets of quadruple- and quintuple-zeta quality. The CaH(2) molecule was found to be quasilinear. The HCaH bending potential function was predicted to be extraordinarily flat near the minimum, located at the HCaH angle of 164 degrees. The barrier to linearity was calculated to be just 6 cm(-1). The vibrational-rotational energy levels of various isotopomers were predicted using the variational method. The calculated vibrational fundamental frequencies are in good agreement with the results of matrix-isolation studies, and the other predicted spectroscopic constants can assist in the future detection of calcium dihydride in the gas phase.  相似文献   

11.
We report the first rotationally resolved spectroscopic studies on PH3+(X2A2") using zero kinetic energy photoelectron spectroscopy and coherent VUV radiation. The spectra about 8000 cm(-1) above the ground vibrational state of PH3+(X2A2") have been recorded. We observed the vibrational energy level splittings of PH3+(X2A2") due to the tunneling effect in the inversion (symmetric bending) vibration (nu2+). The energy splitting for the first inversion vibrational state (0+/0-) is 5.8 cm(-1). The inversion vibrational energy levels, rotational constants, and adiabatic ionization energies (IEs) for nu2+ = 0-16 have been determined. The bond angles between the neighboring P-H bonds and the P-H bond lengths are also obtained using the experimentally determined rotational constants. With the increasing of the inversion vibrational excitations (nu2+), the bond lengths (P-H) increase a little and the bond angles (H-P-H) decrease a lot. The inversion vibrational energy levels have also been calculated by using one dimensional potential model and the results are in good agreement with the experimental data for the first several vibrational levels. In addition to inversion vibration, we also observed firstly the other two vibrational modes: the symmetric P-H stretching vibration (nu1+) and the degenerate bending vibration (nu4+). The fundamental frequencies for nu1+ and nu4+ are 2461.6 (+/-2) and 1043.9 (+/-2) cm(-1), respectively. The first IE for PH3 was determined as 79670.9 (+/-1) cm(-1).  相似文献   

12.
A series of hydrogen bonded complexes involving oxirane and water molecules have been studied. In this paper we report on the vibrational study of the oxirane-water complex (CH(2))(2)O-H(2)O. Neon matrix experiments and ab initio anharmonic vibrational calculations have been performed, providing a consistent set of vibrational frequencies and anharmonic coupling constants. The implementation of a new large flow supersonic jet coupled to the Bruker IFS 125 HR spectrometer at the infrared AILES beamline of the French synchrotron SOLEIL (Jet-AILES) enabled us to record first jet-cooled Fourier transform infrared spectra of oxirane-water complexes at different resolutions down to 0.2 cm(-1). Rovibrational parameters and a lower bound of the predissociation lifetime of 25 ps for the v(OH)(b) = 1 state have been derived from the rovibrational analysis of the ν(OH)(b) band contour recorded at respective rotational temperatures of 12 K (Jet-AILES) and 35 K (LADIR jet).  相似文献   

13.
Vibrational self-consistent field (VSCF) and correlation-corrected vibrational self-consistent field (CC-VSCF) methods were used to compute the anharmonic frequencies of fundamentals, overtones, and combination transitions of natural abundance hydroxylamine, 15NH2OH, NH2(18)OH, ND2OD, ND2OH, and NH2OD isotopomers at second order M?ller-Plesset perturbation theory (MP2) in basis sets of triple-zeta quality. Frequencies of the fundamental transitions observed in the gas phase spectrum were reproduced by CC-VSCF treatment within 20 cm(-1) in TZV(d,p) and TZV(2d,2p) basis sets, and the change of basis set composition had only minor effect on the frequencies of the computed fundamentals. CC-VSCF computed wave numbers of overtone and combination transitions were typically within 1-40 cm(-1) of the gas phase band positions, except for those resulting from multiple excitations of v2, v3, and v7 fundamentals, because of a strong mutual coupling between these modes. Integral transition intensities calculated at MP2 level closely followed those of experimental spectrum, including intensity decrease in v1, 2v1, 3v1 progression, and 30-fold intensity increase of 2v8 in respect to that of v8 fundamental. The frequency of the OH torsional fundamental was found to be strongly dependent on the mode-mode interaction potential among v9 and v1, v7, v2, v4, v5 modes. Band shifts resulting from 15N, 18O and complete 2H substitutions were reproduced almost quantitatively by CC-VSCF computation in TZV(d,p) basis. Computed anharmonic isotope frequency shifts were different from those obtained in the harmonic approximation and no scaling procedure seemed capable of performing their interchange.  相似文献   

14.
IR and spectra of the L-ascorbic acid (L-AA) also known as vitamin C have been recorded in the region 4000-50 cm(-1). In order to make vibrational assignments of the observed IR and Raman bands computations were carried out by employing the RHF and DFT methods to calculate the molecular geometries and harmonic vibrational frequencies along with other related parameters for the neutral L-AA and its singly charged anionic (L-AA(-)) and cationic (L-AA(+)) species. Significant changes have been found for different characteristics of a number of vibrational modes. The four ν(O-H) modes of the L-AA molecule are found in the order ν(O(9)-H(10))>ν(O(19)-H(20))>ν(O(7)-H(8))>ν(O(14)-H(15)) which could be due to complexity of hydrogen bonding in the lactone ring and the side chain. The CO stretching wavenumber (ν(46)) decreases by 151 cm(-1) in going from the neutral to the anionic species whereas it increases by 151 cm(-1) in going from the anionic to the cationic species. The anionic radicals have less kinetic stabilities and high chemical reactivity as compared to the neutral molecule. It is found that the cationic radical of L-AA is kinetically least stable and chemically most reactive as compared to its neutral and anionic species.  相似文献   

15.
The collision complex formed from a vibrationally excited reactant undergoes redissociation to the reactant, intramolecular vibrational relaxation (randomization of vibrational energy), or chemical reaction to the products. If attractive interaction between the reactants is large, efficient vibrational relaxation in the complex prevents redissociation to the reactants with the initial vibrational energy, and the complex decomposes to the reactants with low vibrational energy or converts to the products. In this paper, we have studied the branching ratios between the intramolecular vibrational relaxation and chemical reaction of an adduct HO(v)-CO formed from OH(X(2)Π(i)) in different vibrational levels v = 0-4 and CO. OH(v = 0-4) generated in a gaseous mixture of O(3)/H(2)/CO/He irradiated at 266 nm was detected with laser-induced fluorescence (LIF) via the A(2)Σ(+)-X(2)Π(i) transition, and H atoms were probed by the two-photon excited LIF technique. From the kinetic analysis of the time-resolved LIF intensities of OH(v) and H, we have found that the intramolecular vibrational relaxation is mainly governed by a single quantum change, HO(v)-CO → HO(v-1)-CO, followed by redissociation to OH(v-1) and CO. With the vibrational quantum number v, chemical process from the adduct to H + CO(2) is accelerated, and vibrational relaxation is decelerated. The countertrend is elucidated by the competition between chemical reaction and vibrational relaxation in the adduct HOCO.  相似文献   

16.
The infrared photodissociation spectra of [(CO 2) n (CH 3OH) m ] (-) ( n = 1-4, m = 1, 2) are measured in the 2700-3700 cm (-1) range. The observed spectra consist of an intense broad band characteristic of hydrogen-bonded OH stretching vibrations at approximately 3300 cm (-1) and congested vibrational bands around 2900 cm (-1). No photofragment signal is observed for [(CO 2) 1,2(CH 3OH) 1] (-) in the spectral range studied. Ab initio calculations are performed at the MP2/6-311++G** level to obtain structural information such as optimized structures, stabilization energies, and vibrational frequencies of [(CO 2) n (CH 3OH) m ] (-). Comparison between the experimental and the theoretical results reveals the structural properties of [(CO 2) n (CH 3OH) m ] (-): (1) the incorporated CH 3OH interacts directly with either CO 2 (-) or C 2O 4 (-) core by forming an O-HO linkage; (2) the introduction of CH 3OH promotes charge localization in the clusters via the hydrogen-bond formation, resulting in the predominance of CO 2 (-).(CH 3OH) m (CO 2) n-1 isomeric forms over C 2O 4 (-).(CH 3OH) m (CO 2) n-2 ; (3) the hydroxyl group of CH 3OH provides an additional solvation cite for neutral CO 2 molecules.  相似文献   

17.
The first spectroscopic identification of the H2O-HO radical complex in the gas phase has been conducted by utilizing pulsed-discharge nozzle Fourier transform microwave spectroscopy. R-branch transitions in the Ka = 0 manifold appeared as in Hund's case (b), but extraordinarily large spin doubling implies a strong spin-orbit coupling between the electronic ground and low-lying excited states that correlate to the degenerate 2Pi state in free OH. The geometry of the complex is of C2v symmetry as a zero-point vibrational average, in which the OH radical acts as a proton donor to water. Precisely determined hyperfine coupling constants associated with hydrogen nuclei indicate a substantial rearrangement in unpaired electron distribution: there exists small but nonzero spin density on the H atoms in water.  相似文献   

18.
The reaction between OH and HOCO has been examined using the coupled-cluster method to locate and optimize the critical points on the ground-state potential energy surface. The energetics are refined using the coupled-cluster method with basis set extrapolation to the complete basis set (CBS) limit. Results show that the OH + HOCO reaction produces H2O + CO2 as final products and the reaction passes through an HOC(O)OH intermediate. In addition, the OH + HOCO reaction has been studied using a direct dynamics method with a dual-level ab initio theory. Dynamics calculations show that hydrogen bonding plays an important role during the initial stages of the reaction. The thermal rate constant is estimated over the temperature range 250-800 K. The OH + HOCO reaction is found to be nearly temperature-independent at lower temperatures, and at 300 K, the thermal rate constant is predicted to be 1.03 x 10(-11) cm3 molecule(-1) s(-1). In addition, there may be an indication of a small peak in the rate constant at a temperature between 300 and 400 K.  相似文献   

19.
The rotational spectra of NiCO and PdCO in the ground and ν(2) excited vibrational states were observed by employing a source-modulated microwave spectrometer. The NiCO and PdCO molecules were generated in a free space cell by the sputtering reaction of nickel and palladium sheets, respectively, lining the inner surface of a stainless steel cathode with a dc glow plasma of CO and Ar. The molecular constants of NiCO and PdCO were determined by least-squares analysis. By force field analysis for the molecular constants of not only NiCO and PdCO but also of PtCO as previously reported, the harmonic force constants were determined for these three group 10 metal monocarbonyls. The vibrational wavenumbers derived for the lower M-C stretching vibrations were in good agreement with those obtained from the IR spectra in noble gas matrices and those predicted by several quantum chemical calculations published in the past. The bending vibrational wavenumbers derived by the force field analysis were also consistent with most quantum chemical calculations previously reported, but showed systematic discrepancies from the matrix IR values by about 40 cm(-1), even after reassignment (ν(2) band → 2ν(2) band) of the matrix IR spectra of PdCO and PtCO.  相似文献   

20.
The trifluoromethyl radical, CF(3)(●), is studied for the first time by means of threshold photoelectron spectroscopy (TPES). The radical is produced in the gas phase using the flash-pyrolysis technique from hexafluoroethane as a precursor. CF(3)(+) total ion yield and mass-selected TPES of the radical are recorded using a spectrometer based upon velocity map imaging and Wiley-McLaren time-of-flight coupled to the synchrotron radiation. The high resolution of the instrument and of the photons allows the observation of rich vibrational progressions in the TPES of CF(3)(●). By using Franck-Condon factors computed by Bowman and coworkers, we have been able to simulate the TPES. The initial vibrational temperature of the radical beam has been evaluated at 350 ± 70 K. The structures have been identified as transitions between (n(1),n(2)) and (n(1)(+),n(2)(+)) vibrational levels of CF(3) and CF(3)(+) with small excitation of the breathing mode, ν(1)(+) (,) and large excitation (n(2)(+) = 10-26) of the umbrella mode, ν(2)(+), in the cation. From the energy separation between the two resolved peaks of each band, a value of 994 ± 16 cm(-1) has been derived for the ν(1)(+) breathing frequency of CF(3)(+). For the high-lying n(2)(+) levels, the apparent ν(2)(+) umbrella spacing, 820 ± 14 cm(-1), is fairly constant. Taking into account the ν(2)(+) anharmonicity calculated by Bowman and coworkers, we have deduced ν(2)(+) = 809 ± 14 cm(-1), and semi-empirical estimations of the adiabatic ionization energy IE(ad.)(CF(3)(●)) are proposed in good agreement with most of previous works. A value of the vertical ionization potential, IE(vert.)(CF(3)(●)) = 11.02 eV, has been derived from the observation of a photoelectron spectrum recorded at a fixed photon energy of 12 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号