首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Quantum chemical ab initio calculations have been performed for the ground state and for several excited states of the F3+ ion (F IV). Three levels of accuracy have been used: Frozen-core SCF calculations (FRC-SCF) to determine orbital energies ε nl and quantum defects δ l for excited Rydberg orbitalsnl; frozen-core SCF followed by CI calculations (FRC-CI) which account for multiplet splittings and configuration mixings, and multi-configuration coupled-electron-pair approximation (MC-CEPA) calculations which include dynamic correlation effects. The accuracy of the calculated excitation energies is in the order of 5000 cm?1 at the FRC-CI level and in the order of 500 cm?1 at the MC-CEPA level. This latter error amounts to about 0.1% for excitation energies in the range of 400000 to 600000 cm?1. The MC-CEPA calculations have been performed for 17 experimentally known states and for 14 experimentally unknown states, in particular for the configurations 2s2p 2 (2 D)3s, 2s 2p 2(2 S)3s, 2s 2 2p 4p, and 2s 2 2p 5p.  相似文献   

2.
The results of ab-initio self-consistent field calculations for the ground state and configuration interaction calculations for the excited states of the permanganate ion are presented and discussed. The calculations were performed using two large basis sets of contracted gaussian functions, and singly excited configurations were used in the calculations of the excited states. Fair agreement is obtained between these results and the experimental absorption spectra.  相似文献   

3.
The excited electronic states of the p-coumaric acid thio-ester chromophore of the Photoactive Yellow Protein (PYP) are characterized in view of identifying the key factors determining the chromophore's isomerisation. These factors include the anionic nature of the chromophore, the presence of sulfur (rather than oxygen or nitrogen) in the ester moiety, and the presence of a hydrogen-bonding environment stabilizing the phenolate moiety. Two twisted stationary S1 structures are identified, corresponding to a twist around the double bond conjugated with the aromatic ring, and the single bond adjacent to the ring, respectively. The latter structure is accessed directly by relaxation from the Franck–Condon (FC) geometry. These structures are shown to entail a substantial polarization effect (increasing charge separation when moving towards the twisted geometry). Further, an inversion of charge character is observed for the double-bond twisted minimum, which can be accounted for by the vicinity of an S1–S0 conical intersection. The S1–S0 gap at the minimum geometries depends in a sensitive fashion on the -carbonyl heteroatom. Based upon these observations for the intrinsic properties of the chromophore, we further address the effect of the Arg52 residue, which acts as a counter-ion in the native protein environment.  相似文献   

4.
In the present work, we present results of all-electron ab initio CASSCF calculations of nine electronic states of the molecule YN. Also reported are the spectroscopic constants derived on the basis of the calculated potential energies. The predicted electronic ground state is 1+, and this state is found to be separated from the excited states 3+, 3Π, and 1Π by 5177, 9290, and 9915 cm?1, respectively. The chemical bond in the YN molecule is polar with charge transfer from Y to N, giving rise to a dipole moment of 8.19 Debye at 3.3 au in the 1+ ground state is basically a double bond composed of two π bonds. The dissociation energy of the YN molecule has been derived as 4.59 eV. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Oligoacenes C(4n+2)H(2n+4) (n=2,...,6) are studied using a variety of ab initio methods. Density functional theory (DFT) optimized geometries were in good agreement with experiment. Vertical and adiabatic ionization potentials and electron affinities were computed with DFT and it was found that standard exchange-correlation (xc) functionals underestimate ionization potentials in oligoacenes. Possible reasons for this underestimation are discussed. Low lying electronic excitations were computed using time-dependent density functional theory, configuration interaction singles, and configuration interaction singles with approximate treatment of doubles. In agreement with earlier work, time-dependent DFT in conjunction with standard xc-energy functionals substantially underestimates the lowest (p) singlet-singlet electronic transition.  相似文献   

6.
Accurate calculations of the low-lying singlet and triplet electronic states of thiozone, S(3), have been carried out using large multireference configuration interaction wave functions. Cuts of the full potential energy surfaces along the stretching and bending coordinates have been presented, together with the vertical excitation spectra. The strong experimentally observed absorption around 395 nm is assigned to the 1 (1)B(2) state, which correlates to ground state products. Absorption at wavelengths shorter than 260 nm is predicted to lead to singlet excited state products, S(2) (a (1)Delta(g))+S((1)D). The spectroscopic properties of the X (3)Sigma(g) (-), a (1)Delta(g), and b (1)Sigma(g) (+) electronic states of the S(2) radical have also been accurately characterized in this work. The investigations of the low-lying electronic states were accompanied by accurate ground state coupled cluster calculations of the thermochemistry of both S(2) and S(3) using large correlation consistent basis sets with corrections for core-valence correlation, scalar relativity, and atomic spin-orbit effects. Resulting values for D(0)(S(2)+S) and SigmaD(0) for S(3) are predicted to be 61.3 and 162.7 kcal/mol, respectively, with conservative uncertainties of +/-1 kcal/mol. Analogous calculations predict the C(2v)-D(3h) (open-cyclic) isomerization energy of S(3) to be 4.4+/-0.5 kcal/mol.  相似文献   

7.
Electronic circular dichroism (ECD) parameters of the disulphide chromophore have been calculated for dihydrogen disulphide, dimethyl disulphide, and cystine using density-functional theory, coupled-cluster theory, and multiconfigurational self-consistent field theory. The objective is twofold: first, to examine the performance of the Coulomb-attenuated CAM-B3LYP functional for the calculation of ECD spectra; second, to investigate the dependence of the ECD parameters on the conformation around the disulphide bridge. The CAM-B3LYP functional improves considerably on the B3LYP functional, giving results comparable to CCSD theory and to MCSCF theory in an extended active space. The conformational dependence of the ECD parameters does not change much upon substitution, which is promising for the application of ECD in structural investigations of proteins containing disulphide bridges.  相似文献   

8.
This paper reports on the first measurements of the electron impact electronic excitation cross-sections for carbonyl fluoride, F(2)CO, measured at 30 eV, 10° and 100 eV, 5° scattering angle, while sweeping the energy loss over the range 5.0-18.0 eV. The electronic-state spectroscopy has been investigated and the assignments are supported by quantum chemical calculations. The energy bands above 9.0 eV and the vibrational progressions superimposed upon it have been observed for the first time. Vibronic coupling has been shown to play an important role dictating the nature of the observed excited states, especially for the low-lying energy region (6.0-8.0 eV). New experimental evidence for the 6(1)B(2) state proposed to have its maximum at 12.75 eV according to the vibrational excitation reported in this energy region (11.6-14.0 eV). The n = 3 members of the Rydberg series have been assigned converging to the lowest ionization energy limits, 13.02 eV ((2)B(2)), 14.09 eV ((2)B(1)), 16.10 ((2)B(2)), and 19.15 eV ((2)A(1)) reported for the first time and classified according to the magnitude of the quantum defects (δ).  相似文献   

9.
The goal of this study is to explore the photochemical processes following optical excitation of the glycine molecule into its two low-lying excited states. We employed electronic structure methods at various levels to map the PES of the ground state and the two low-lying excited states of glycine. It follows from our calculations that the photochemistry of glycine can be regarded as a combination of photochemical behavior of amines and carboxylic acid. The first channel (connected to the presence of amino group) results in ultrafast decay, while the channels characteristic for the carboxylic group occur on a longer time scale. Dynamical calculations provided the branching ratio for these channels. We also addressed the question whether conformationally dependent photochemistry can be observed for glycine. While electronic structure calculations favor this possibility, the ab initio multiple spawning (AIMS) calculations showed only minor relevance of the reaction path resulting in conformationally dependent dynamics.  相似文献   

10.
All-electron ab initio Hartree–Fock (HF ), valence configuration interaction (CI ), and multiconfiguration self-consistent-field (CASSCF ) calculations have been applied to investigate the electronic states of the CrC molecule. The molecule is predicted as having four low-lying electronic states, 3?, 5?, 7?, and 9?, separated by an energy gap of 0.55 eV from the next higher-lying state, 1?, which is followed by the states 5Π and 7Π. The four lowest-lying electronic states are due to the coupling of the angular momenta of the 6Sg Cr+ ion with those of the 4Su C? anion. The chemical bond in the 3? ground state can be viewed as a quadruple bond composed of two σ and two π bonds. One σ bond is due to the formation of a molecular orbital that is doubly occupied. The remaining bonds, i.e., one σ and two π bonds, arise from valence-bond couplings. The π bonds originate from the valence-bond couplings of the electrons in the C 2pπ orbitals with those in the Cr 3dπ orbitals. The σ bond originates from the valence-bond coupling of the C 2pσ electron with an electron in the Cr 4s, 4p hybrid that is polarized away from the C atom.  相似文献   

11.
Configuration-based multi-reference second order perturbation theory (CB-MRPT2) and multi-reference configuration interaction with single and double excitations (MRCISD) have been used to calculate the bending and dissociation potential energy curves (PECs) of ozone. Based on these PECs, equilibrium structures, vertical and adiabatic transition energies of the ground state and several low-lying excited states, as well as intersections and avoided crossings among the states displayed on the PECs are investigated. The energy separation of the open and ring structures and the dissociation energy of the ground state X(1)A(1) are determined by reference-selected MRCISD. Furthermore, one-dimensional cuts along the dissociation reaction coordinate for the lowest four electronic states of O(3) with (1)A' symmetry and possible pre-dissociations are studied. The Hartley band may be pre-dissociable, and the pre-dissociation limit is found to be 3871 cm(-1), which corresponds to symmetric stretching quanta n(ss) ≈ 6.  相似文献   

12.
13.
Manganese(V)-oxo corrole and corrolazine have been studied with ab initio multiconfiguration reference methods (CASPT2 and RASPT2) and large atomic natural orbital (ANO) basis sets. The calculations confirm the expected singlet d(δ)(2) ground states for both complexes and rule out excited states within 0.5 eV of the ground states. The lowest excited states are a pair of Mn(V) triplet states with d(δ)(1)d(π)(1) configurations 0.5-0.75 eV above the ground state. Manganese(IV)-oxo macrocycle radical states are much higher in energy, ≥1.0 eV relative to the ground state. The macrocyclic ligands in the ground states of the complexes are thus unambiguously 'innocent'. The approximate similarity of the spin state energetics of the corrole and corrolazine complexes suggests that the latter macrocycle on its own does not afford any special stabilization for the Mn(V)O center. The remarkable stability of an Mn(V)O octaarylcorrolazine thus appears to be ascribable to the steric protection afforded by the β-aryl groups.  相似文献   

14.
The results of anab initio SCF calculation for the ground state and CI calculations for the excited states of p-benzoquinone are presented and discussed. A minimum basis set of Slater type orbitals was employed and the CI calculations were performed by considering single excitations from valence to virtual SCF molecular orbitals. The convergence of the calculated excitation energies is studied as a function of the number of orbitals used in the CI calculations. These calculations explain quite well the experimental results.  相似文献   

15.
16.
The internal rotation of propionaldehyde about the 1–2 bond has been studied by means of ab initio calculations. The most stable conformer has methyl and carbonyl eclipsed. Increasing the 1–2 dihedral angle to 60°, 120°, and 180° gives energies of 1.7, 0.4, and 0.7 Kcal/mol, respectively. The agreement with force field calculations and with experiment is reasonable.  相似文献   

17.
We have investigated the nonradiative deactivation process of malachite green in the singlet excited states, S(1) and S(2), by high-level ab initio quantum chemical calculations using the CASPT2//CASCF approach. The deactivation pathways connecting the Franck-Condon region and conical intersection regions are identified. The initial population in the S(1) state is on a flat surface and the relaxation involves a rotation of phenyl rings, which leads the molecule to reach the conical intersection between the S(1) and S(0) states, where it efficiently decays back to the ground state. There exists a small barrier connecting the Franck-Condon and conical intersection regions on the S(1) potential energy surface. The decay mechanism from the S(2) state also involves the twisting motion of phenyl rings. In contrast to the excitation to the S(1) state, the initial population is on a downhill ramp potential and the barrierless relaxation through the rotation of substituted phenyl rings is expected. During the course of relaxation, the molecule switches to the S(1) state at the conical intersection between S(2) and S(1), and then it decays back to the ground state through the intersection between S(1) and S(0). In relaxation from both S(1) and S(2), large distortion of phenyl rings is required for the ultrafast nonradiative decay to the ground state.  相似文献   

18.
Sixteen low-lying electronic states of NaLi are investigated by SCF/valence Cl calculations including core polarization effects by means of an effective potential. Spectroscopic constants are obtained with estimated uncertainties of ΔRe ? 0.01 Å, Δωe ? 0.6 cm?1 and ΔDe ? 80 cm?1. From a comparison of experimental and theoretical G(υ) values, we suggest a ground-state dissociation energy of 7093 ± 5 cm?1. Using our rovibrational energies and recently measured excitation lines, we are able to improve the Te values and dissociation energies of five excited states to an accuracv of ±8 cm?1.  相似文献   

19.
The structural and electronic characters of four types of hydroxyl group-substituted anthocyanidins (pelargonidin, cyanidin, delphinidin, and aurantinidin) were examined using quantum chemical calculations. For these cationic molecules, both the planar and non-planar structures in the electronic ground state were determined at the B3LYP/D95 level of theory. We revealed that the planar structure is slightly more stable than the non-planar structure for each molecule. For the optimized planar structures, single excitation-configuration interaction (SE-CI) based on the restricted Hartree-Fock (RHF) wave function was evaluated and the electronic character in the low-excited states was discussed in terms of the MO theory. Symmetry adapted cluster (SAC)/SAC-CI calculations were also carried out to estimate the excitation energies precisely. The results showed that hydroxylation of the phenyl group causes a change in the excitation energies without taking the solvent effects into account. The results are in agreement with spectral experiments and previous MO calculations.  相似文献   

20.
Ab initio calculations on the ground and valence excited states of the GaF molecule have been performed by using the internally contracted multireference electronic correlation methods (MR-CISD, MR-CISD + Q, and MR-AQCC) with entirely uncontracted all-electronic basis sets and Douglas-Kroll scalar relativistic correction. The potential energy curves of all valence states and the spectroscopic constants of bound states are fitted. It is the first time that the 12 valence Lambda-S states of GaF molecule and all of the 23 Omega states generated from the former are studied in a theoretical way. Calculation results well reproduce most of the experimental data. The effects of the size-extensivity correction and the avoided crossing rule between Omega states of the same symmetry are analyzed. The transition properties of the A 3Pi0+, B 3Pi1, C 1Pi1, and 3Sigma1+ states are predicted, including the transition dipole moments, the Franck-Condon factors and the radiative lifetimes. The radiative lifetime of the C 1Pi1 state of GaF molecule is of the order of nanosecond, implying that it is a rather short-live state. The lifetimes of the B 3Pi1 and 3Sigma1+ states are of the order of microsecond, while the lifetime of the A 3Pi0+ state are the order of millisecond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号