首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary  In the first part of the article an infinite circular cylinder is considered, made of transversely isotropic elastic material and weakened by a plane crack perpendicular to its axis O z. The crack is opened by an arbitrary normal stress. The second part is devoted to the same crack loaded by an arbitrary tangential stress. The complete solution in both cases is presented as a sum of the solution of a similar problem of a crack in an infinite space and an integral transform term, the parameters of which are determined from a set of linear algebraic equations derived from the boundary conditions. Governing integral equations with respect to the yet unknown crack displacement discontinuities are obtained. In the case of a circular crack, these equations can be inverted and solved by the method of consecutive interations. Received 30 November 2000; accepted for publication 3 May 2001  相似文献   

2.
In this note, integral equations for the problem of an internal plane crack of arbitrary shape in a three-dimensional elastic half-space are derived. The crack plane is assumed to beparallel to the free surface. Use is made of Mindlin's point force solution in the interior of a semi-infinite solid in deriving the integral equations for the problem.  相似文献   

3.
The three-dimensional stress singularity at the top of an arbitrary polyhedral corner is considered. Based on the boundary integral equations, the problem is reduced by the Mellin transform to a system of certain one-dimensional integral equations. The orders of stress singularity are spectral points of the integral operators while angular distribution and intensity factors are found as residues at those points. Numerical results are obtained by means of the Galerkin discretization scheme using expansions in terms of orthogonal polynomials with the proper weights. Some of the results illustrating the orders dependence on the elastic properties and corner geometry for a wedge-shaped punch and a crack, for an elastic trihedron and for a surface-breaking crack are given.  相似文献   

4.
We use the Betti theorem to obtain the integral equations of the dynamic theory of elasticity for a multilayer convex body with an arbitrary elastic anisotropy of layers containing plane infinitely thin cracks. The systems of integral equations relate the displacement jumps to the stresses on the crack lips and are stated numerically in terms of Fourier transforms. For the case of plane-parallel layers with a set of plane cracks on the interfaces between the layers, we propose a simple numerical-analytic method for constructing the Fourier symbol, i.e., the matrix of the kernel of the system of integral equations. The method is stable for an arbitrary combination of continuous and discontinuous conditions on the layer boundaries. Numerical examples are given for a packet of four heterogeneous anisotropic layers.  相似文献   

5.
An internal crack located within a functionally graded material (FGM) strip bonded with two dissimilar half-planes and under an anti-plane load is considered. The crack is oriented in an arbitrary direction. The material properties of strip are assumed to vary exponentially in the thickness direction and two half-planes are assumed to be isotropic. Governing differential equations are derived and to reduce the difficulty of the problem dealing with solution of a system of singular integral equations Fourier integral transform is employed. Semi closed form solution for the stress distribution in the medium is obtained and mode III stress intensity factor (SIF), at the crack tip is calculated and its validity was verified. Finally, the effects of nonhomogeneous material parameter and crack orientation on the stress intensity factor are studied.  相似文献   

6.
A half-space containing a surface-breaking crack of uniform depth is subjected to three-dimensional dynamic loading. The elastodynamic stress-analysis problem has been decomposed into two problems, which are symmetric and antisymmetric, respectively, relative to the plane of the crack. The formulation of each problem has been reduced to a system of singular integral equations of the first kind. The symmetric problem is governed by a single integral equation for the opening-mode dislocation density. A pair of coupled integral equations for the two sliding-mode dislocation densities govern the antisymmetric problem. The systems of integral equations are solved numerically. The stress-intensity factors are obtained directly from the dislocation densities. The formulation is valid for arbitrary 3-D loading of the half-space. As an example, an applied stress field corresponding to an incident Rayleigh surface wave has been considered. The dependence of the stress-intensity factors on the frequency, and on the angle of incidence, is displayed in a set of figures.  相似文献   

7.
Making use of the Somigliana identity, the boundary integral equations are obtained for a planar crack of arbitrary shape in an elastic half space. The material is piezoelectric with transversal isotropy. The solution is given for a penny-shaped crack parallel to the free boundary while the loading is axially symmetric.  相似文献   

8.
The problem of an arbitrary number of arbitrarily oriented straight cracks in an infinitely long piezoelectric strip is considered here. The cracks are acted by suitably prescribed internal tractions and are assumed to be either electrically impermeable or permeable. A Green's function which satisfies the conditions on the parallel edges of the strip is derived using a Fourier transform technique and applied to formulate the electroelastic crack problem in terms of a system of hypersingular integral equations. Once the hypersingular integral equations are solved, quantities of practical interest, such as the crack tip stress and electric displacement intensity factors, can be easily computed. Some specific cases of the problem are examined.  相似文献   

9.
Summary A solution is derived from equations of equilibrium in an infinite isotropic elastic solid containing a penny-shaped crack where displacements are given. Abel transforms of the second kind stress and displacement components at an arbitrary point of the solid are known in the literature in terms of jumps of stress and displacement components at a crack plane. Limiting values of these expressions at the crack plane together with the boundary conditions lead to Abel-type integral equations, which admit a closed form solution. Explicit expressions for stress and displacement components on the crack plane are obtained in terms of prescribed face displacements of crack surfaces. Some special cases of the crack surface shape functions have been given in the paper.  相似文献   

10.
This is part II of the work concerned with finding the stress intensity factors for a circular crack in a solid with piezoelectric behavior. The method of solution involves reducing the problem to a system of hypersingular integral equations by application of the unit concentrated displacement discontinuity and the unit concentrated electric potential discontinuity derived in part I [1]. The near crack border elastic displacement, electric potential, stress and electric displacement are obtained. Stress and electric displacement intensity factors can be expressed in terms of the displacement and the potential discontinuity on the crack surface. Analogy is established between the boundary integral equations for arbitrary shaped cracks in a piezoelectric and elastic medium such that once the stress intensity factors in the piezoelectric medium can be determined directly from that of the elastic medium. Results for the penny-shaped crack are obtained as an example.  相似文献   

11.
This paper focuses on the theoretical basis for the study of wave scattering from an interface crack in multilayered piezoelectric media. The materials are taken to be anisotropic with arbitrary symmetry. Based on the Fourier transform technique together with the aid of the stiffness matrix approach, the boundary value problem of wave scattering is reduced to solving a system of Cauchy-type singular equations. The intensity factors and crack opening displacements are defined in terms of the solutions of the corresponding integral equations for any incident frequencies and incident angles. Numerical results are presented. The effects of incident frequencies and crack location on both the major and coupling intensity factors are illustrated. The influence of the piezoelectricity is also shown.  相似文献   

12.
三维断裂力学的超奇异积分方程方法   总被引:17,自引:5,他引:17  
汤任基  秦太验 《力学学报》1993,25(6):665-675
本文利用有限部积分的概念和方法,严格地证明了三维弹性体中受任意载荷作用的平片裂纹问题的超奇异积分方程组,并对未知解的性态作了理论分析,得到了性态指数,在此基础上通过主部分析,精确地求得了裂纹前沿光滑点附近的奇性应力场,从而找到了以裂纹面位移间断(位错)表示的应力强度因子表达式,最后对所得的超奇异积分方程组建立了数值法,并用此计算了若干典型的平片裂纹问题,数值结果令人满意。  相似文献   

13.
三维有限体平片裂纹的超奇异积分方程与边界元法   总被引:1,自引:2,他引:1  
秦太验  陈卫江 《力学学报》1997,29(4):481-485
利用Somigliana公式及有限部积分的概念,导出了含任意平片裂纹三维有限体问题的超奇异积分方程组,并联合使用有限部积分与边界元法,建立了数值求解方法.在裂纹前沿附近单元,采用与理论分析一致的平方根位移模型,以提高数值结果的精度.最后计算了若干典型例子的应力强度因子.  相似文献   

14.
In this paper the anti-plane problem for an interface crack between two dissimilar magneto-electro-elastic plates subjected to anti-plane mechanical and in-plane magneto-electrical loads is investigated. The interface crack is assumed to be either magneto-electrically impermeable or permeable, and the position of the interface crack is arbitrary. The finite Fourier transform method is employed to reduce the mixed boundary-value problem to triple trigonometric series equations. The dislocation density functions and proper replacement of the variables are introduced to reduce these series equations to a standard Cauchy singular integral equation of the first kind. The resulting integral equation together with the corresponding single-valued condition is approximated as a system of linear algebra equations which can be easily solved. Field intensity factors and energy release rates are determined numerically and discussed in detail. Numerical results show the effects of crack configuration and loading combination parameters on the fracture behaviors of crack tips according to energy release rate criterion. The study of this problem is expected to have applications to the investigation of dynamic fracture properties of magneto-electro-elastic materials with cracks.  相似文献   

15.
本文利用三维断裂力学的超奇异积分方程求解理论,对三维无限体中两平行平片裂纹在任意载荷作用下的相互干扰问题作了研究。首先导出了以裂纹面移间断(位借)为未知函数的超奇异积分方程组,然后为其建立了有限积分边界元法;在此基础上,讨论用了裂纹面位移间断计算应力强度因子的方法,最后用此计算了两平行平片裂纹的相对位置对裂前沿应力强度因子的影响,其数值结果令人满意。  相似文献   

16.
Using the Somigliana formula and the concepts of finite-part integral, a set of hypersingular integral equations to solve the arbitrary fiat crack in three-dimensional elasticity is derived and its numerical method is then proposed by combining the finitepart integral method with boundary element method. In order to verify the method, several numerical examples are carried out. The results of the displacement discontinuities of the crack surface and the stress intensity factors at the crack front are in good agrernent with the' theoretical solutions.  相似文献   

17.
By using the analytic theory of hypersingular integral equations in three-dimensional fracture mechanics, the interactions between two parallel planar cracksunder arbitrary loads are investigated. According to the concepts and method of finite-part integrals, a set of hypersingular integral equations is derived, in which theunknown functions are the displacement discontinuities of the crack surfaces. Then itsnumerical method is proposed by combining the finite-part integral method with theboundary element method. Based on the above results, the method for calculating thestress intensity factors with the displacement discontinuities of the crack surfaces ispresented. Finally, several typical examples are calculated and the numerical resultsare satisfactory.  相似文献   

18.
本文采用考虑裂纹面上具有任意分布载荷的线弹簧模型,在Kirchhoff板弯曲理论的假设下,将含半椭圆型表面裂纹的平板问题化为一组耦合的积分方程组进行求解,对均匀拉伸和纯弯曲两种载荷作用下的应力强度因子数值解,同经典线弹簧模型和有限元解进行了比较,并给出了经典线弹簧模型不能得到的、裂纹面上承受幂次不均匀应力分布时应力强度因子的数值解.  相似文献   

19.
Summary  Plane elasticity solutions are presented for the problem of an oblique crack in two bonded media. The material model under consideration consists of a homogeneous half-plane with an arbitrarily oriented crack and a nonhomogeneous half-plane. The Fourier integral transform method is employed in conjunction with the coordinate transformations of field variables in the basic elasticity equations. Formulation of the crack problem results in having to solve a system of singular integral equations for arbitrary crack surface tractions. A crack perpendicular to or along the bonded interface between the homogeneous and nonhomogeneous constituents arises as a limiting case. In the numerical results, the values of mixed-mode stress intensity factors are provided for various combinations of relevant geometric and material parameters of the bonded media. Subsequently, the infinitesimal kinks from the tips of a main crack are presumed, with the corresponding local driving forces being evaluated in terms of the stress intensities of the main crack. The criterion of maximum energy release rate is applied with the aim of making some conjectures concerning the likelihood of kinking and the probable kink direction based on the approximation of local homogeneity and brittleness of the crack-tip behavior. Received 25 September 2001; accepted for publication 13 February 2002  相似文献   

20.
The concepts of crack energy density (CED) and its derivatives in arbitrary direction were established for piezoelectric material and, keeping their application to mixed mode fracture in mind, the characteristic features of them as fracture parameters were investigated based on the approximate equations for CED and its derivatives. That is, CED and its derivatives in arbitrary direction are defined first and separation into their each mode contribution is made. Subsequently, path independent integral expressions of them are derived, and then using them, approximate equations of each mode contribution of CED are obtained concretely for the case where linear singular solution is known. The resulting equations are then used to investigate the effects of electric field and electrical boundary condition on CED and its derivatives. An infinite piezoelectric plane with a crack inclined with respect to the poling direction is considered as a numerical example. Mode I contribution of mechanical CED is mainly employed as a possible fracture parameter for the study and it was shown that applied electric field significantly influences on fracture parameters especially for the impermeable crack perpendicular to the poling direction. The effect of electric field has the tendency to decrease as crack inclination angle increases. It was also found that, even for the impermeable crack perpendicular to the poling direction, crack propagation could be deviated from self-similar direction under a strong negative electric field, and this fact is qualitatively consistent with an existing experimental observation. For the ideally sharp crack with no width, impermeable and Hao and Shen type boundary conditions are admissible showing qualitative agreement with experimental results, but exact boundary condition is not suitable and finally consistent with permeable boundary condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号