首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 435 毫秒
1.
We consider the dynamic contact problem on vertical motions of an absolutely rigid body on an elastic half-space. We assume that the contact region does not vary during the motion and there is no friction under the die bottom. We construct an approximate solution of the problem under the assumption that the variation in the contact pressure under the die bottom on the time interval in which the Rayleigh wave runs the distance equal to the contact area diameter is small. Computational formulas are obtained for the cases of circular and elliptic dies.  相似文献   

2.
A method of orthogonal polynomials is proposed to solve the contact problem for a rectangular die on an elastic foundation. For the case of an elastic half-space, an exact formula is derived for the translation of the die under symmetric loading  相似文献   

3.
Torsion of an elastic half-space by a rigid punch is investigated. The boundary of the half-space is assumed to be rough. Two geometries of the punch-parabolic and flat end are considered. It is shown that the contact area consists of stick and slip zones. This fact, which is well-known in the classical torsional contact of the elastic half-space with the smooth surface and the parabolic punch, also holds true for the flat-ended punch if the boundary roughness is involved. The partial slip problems are reduced to the integral equations, which are solved numerically. The presented results show the effects of boundary roughness on the shear stresses, size of the stick area and the relation between the twisting moment and the angle of twist.  相似文献   

4.
L. A. Galin’s contact model for a narrow beam bending on an elastic half-space and Melan’s contact model for a stringer are used to consider two problems of contact interaction between one or two identical symmetrically loaded stringers with small rectangular cross-sections and an elastic half-space. The basic characteristics of these problems are expressed by explicit formulas, and the results of their numerical analysis are given as well.  相似文献   

5.
The mode I stress intensity factor for a small edge crack in an elastic half-space is found when the space is in contact with two stratified fluids of different temperatures, the boundary between the fluids oscillating sinusoidally over the solid surface. The variation in the stress intensity factor, which may lead to thermal fatigue crack growth, is examined as a function of time, crack depth, amplitude and temporal frequency of oscillation, surface heat transfer coefficient and material properties of the half-space. It is shown how this ‘boundary layer’ solution may be applied to problems involving finite geometries.  相似文献   

6.
The idea, first used by the author for the case of crack problems, is applied here to solve a contact problem for a transversely isotropic elastic layer resting on a smooth elastic half-space, made of a different transversely isotropic material. A rigid punch of arbitrary shape is pressed against the layer’s free surface. The governing integral equation is derived; it is mathematically equivalent to that of an electrostatic problem of an infinite row of coaxial charged disks in the shape of the domain of contact. The case of circular domain of contact is considered in detail. As a comparison, the method of integral transforms is also used to solve the problem. The main difference of our integral transform approach with the existing ones is in separating of our half-space solution from the integral transform terms. It is shown that both methods lead to the same results, thus giving a new interpretation to the integral transform as a sum of an infinite series of generalized images.  相似文献   

7.
Love waves are dispersive interfacial waves that are a mode of response for anti-plane motions of an elastic layer bonded to an elastic half-space. Similarly, Stoneley waves are interfacial waves in bonded contact of dissimilar elastic half-spaces, when the displacements are in the plane of the solids. It is shown that in slow sliding, long-wavelength Love and Stoneley waves are destabilized by friction. Friction is assumed to have a positive instantaneous logarithmic dependence on slip rate and a logarithmic rate weakening behavior at steady-state.Long-wavelength instabilities occur generically in sliding with rate- and state-dependent friction, even when an interfacial wave does not exist. For slip at low rates, such instabilities are quasi-static in nature, i.e., the phase velocity is negligibly small in comparison to a shear wave speed. The existence of an interfacial wave in bonded contact permits an instability to propagate with a speed of the order of a shear wave speed even in slow sliding, indicating that the quasi-static approximation is not valid in such problems.  相似文献   

8.
A theory of rolling of round bodies in the normal mode with adhesion conditions satisfied on the entire contact area is proposed. This theory refines the classical Coulomb’s theory of rolling in which the rolling moment is directly proportional to the pressing force (e.g., the weight of the rolling body). The rolling moment of cylinders is found to be directly proportional to the pressing force raised to a power of 3/2, and the rolling moment of balls and tori is proportional to the pressing force raised to a power of 4/3. It is shown that the normal mode of uniform rolling can only be provided for a certain ratio of the elastic constants of the materials of the round body and the base forming an ideal pair. The Coulomb problem is solved for the cases of rolling of an elastic cylinder over an elastic half-space, of an elastic ball over an elastic half-space, of an elastic torus over an elastic half-space, and of a cylinder and ball over a tightly stretched membrane. The rolling law is derived for such cases. The rolling friction coefficients, the rolling moment, and the rolling friction force are calculated.  相似文献   

9.
10.
In the plane (plane strain) and axially symmetric statements, we study the problem of stability, under the action of longitudinal compressing forces, of an infinite elastic plate in two-sided contact with an elastic half-space. The upper layer of finite depth is described by the usual equations of linear theory of elasticity; the lower layer, which is geometrically nonlinear, incompressible, and infinite in depth, is prestressed by gravity forces. The total adhesion between the layer of finite depth and the lower half-space is realized. It is also assumed that the same adhesion takes place between the upper layer of the half-space and the plate with the contact tangential stresses taken into account.The results can be used to calculate the working capacity of coated bodies and layered composites and in problems of geophysics.The problem of stability of an infinite elastic plate under longitudinal compression under conditions of two-sided contact with an elastic base was studied earlier in the monograph [1] (Fuss-Winkler base) and in [2–4].  相似文献   

11.
V. I. Fabrikant 《Meccanica》2011,46(6):1239-1263
The idea of generalized images, first used by the author for the case of crack problems, is applied here to solve a contact problem for n transversely isotropic elastic layers, with smooth interfaces, resting on a smooth elastic half-space, made of a different transversely isotropic material. A rigid punch of arbitrary shape is pressed against the top layer’s free surface. The governing integral equation is derived for the case of two layers; it is mathematically equivalent to that of an electrostatic problem of an infinite row of coaxial charged disks in the shape of the domain of contact. This result is then generalized for an arbitrary number of layers. As a comparison, the method of integral transforms is also used to solve the problem. The main difference of our integral transform approach with the existing ones is in separating of our half-space solution from the integral transform terms. It is shown that both methods lead to the same results, thus giving a new interpretation to the integral transform as a sum of an infinite series of generalized images.  相似文献   

12.
Übersicht Es wird ein numerisches Berechnungsverfahren für die Einleitung des Torsionsmomentes im unendlichen Halbraum durch einen kreisringförmigen Stempel, der fest mit dem Halbraum verbunden ist, entwickelt. Das gemischte Randwertproblem wird mit Hilfe geeigneter Singularitäten auf eine Fredholmsche Integralgleichung zurückgeführt und numerisch gelöst. Die Lösung der Integralgleichung gibt direkt die gesuchten Schubspannungen in der Kontaktfläche an. An Testreohnungen wird die Brauchbarkeit der Methode aufgezeigt.
Torsion of an elastic half-space by a flat annular stamp
Summary The problem considered here is that of an elastic isotropic half-space twisted by the rotation of a flat annular stamp to which it is joined. Using singularities the mixed boundary value problem is reduced by means of Betti's reciprocical theorem into a Fredholm integral equation for the unknown shearing stresses in the contact region. Some numerical results are presented and compared with published ones.
  相似文献   

13.
We consider the plane and axisymmetric problems about the contact interaction between an elastic plate and an elastic half-space loaded at infinity by a uniform tensile force parallel to the half-space boundary. We assume that the plate resists extension and does not resist bending. We determine the contact tangential stresses under the plate, the plate point displacements, and the strain distortion coefficient on the half-space surface.Similar problems were considered earlier by a different method in [1].  相似文献   

14.
This paper examines the frictionless adhesive elastic contact problem of a rigid sphere indenting a thin film deposited on a substrate. The result is then used to model the elastic phase of micro-nanoscale indentation tests performed to determine the mechanical properties of coatings and films. We investigate the elastic response including the effects of adhesion, which, as the scale decreases to the nano level, become an important issue. In this paper, we extend the Johnson–Kendall–Roberts, Derjaguin–Muller–Toporov, and Maugis–Dugdale half-space adhesion models to the case of a finite thickness elastic film coated on an elastic substrate. We propose a simplified model based on the assumption that the pressure distribution is that of the corresponding half-space models; in doing so, we investigate the contact radius/film thickness ratio in a range where it is usually assumed the half-space model. We obtain an analytical solution for the elastic response that is useful for evaluating the effects of the film-thickness, the interface film–substrate conditions, and the adhesion forces. This study provides a guideline for selecting the appropriate film thickness and substrate to determine the elastic constants of film in the indentation tests.  相似文献   

15.
The 3D contact problem on the action of a punch elliptic in horizontal projection on a transversally isotropic elastic half-space is considered for the case in which the isotropy planes are perpendicular to the boundary of the half-space. The elliptic contact region is assumed to be given (the punch has sharp edges). The integral equation of the contact problem is obtained. The elastic rigidity of the half-space boundary characterized by the normal displacement under the action of a given lumped force significantly depends on the chosen direction on this boundary. In this connection, the following two cases of location of the ellipse of contact are considered: it can be elongated along the first or the second axis of Cartesian coordinate system on the body boundary. Exact solutions are obtained for a punch with base shaped as an elliptic paraboloid, and these solutions are used to carry out the computations for various versions of the five elastic constants. The structure of the exact solution is found for a punch with polynomial base, and a method for determining the solution is proposed.  相似文献   

16.
The optimization problem for the contact interaction between a rigid punch and an elasticmediumis considered. It is assumed that that the punch is under the action of some prescribed forces and momenta and moves along a surface bounding a half-space filled with an elastic medium. It is also assumed that themotion is quasistatic and the friction forces arising in the region of contact are taken into account. The punch shape is considered as the desired design variable, and the integral functional characterizing the discrepancy between the pressure distribution in the region of contact that corresponds to the optimized shape of the punch and a given goal distribution of pressure is taken as the minimizing criterion. The optimal shape can be determined efficiently by solving the following two problems: first, to obtain the optimal pressure distribution and then to solve a boundary value problemfor the elastic half-space under the action of the obtained normal pressure and friction forces. By way of example, the optimal shape is analytically determined for a punch of rectangular shape in horizontal projection.  相似文献   

17.
The two-dimensional contact problem between a rigid die and an elastic half-space is considered. A numerical method of solution is proposed which involves an iterative process which is continued until the correct solution is obtained according to certain criteria. The method is general enough and can handle punches of arbitrary shape as well as time-dependent indentation velocities. The treatment is unified for subsonic, transonic and supersonic indentations. The numerical procedure is checked with analytical results which are known in several special cases and good agreement is obtained. Results are presented for the smooth as well as frictional indentation by a wedge-shaped die and for a smooth parabolic punch.  相似文献   

18.
The contact interaction problem for a thin circular rigid cover plate and an elastic half-space loaded at infinity by a tensile force directed in parallel to the boundary of the half-space is considered. It is assumed that the cover plate is not resistant to bending deformations. The problem can be reduced to an integral equation of the first kind whose kernel has a logarithmic singularity. The equation is solved approximately by the Multhopp-Kalandia method. The resulting approximate solution is compared with the previously obtained asymptotic solution.  相似文献   

19.
Self-similar problems of contact for non-convex punches are considered. The non-convexity of the punch shapes introduces differences from the traditional self-similar contact problems when punch profiles are convex and their shapes are described by homogeneous functions. First, three-dimensional Hertz type contact problems are considered for non-convex punches whose shapes are described by parametric-homogeneous functions. Examples of such functions are numerous including both fractal Weierstrass type functions and smooth log-periodic sine functions. It is shown that the region of contact in the problems is discrete and the solutions obey a non-classical self-similar law. Then the solution to a particular case of the contact problem for an isotropic linear elastic half-space when the surface roughness is described by a log-periodic function, is studied numerically, i.e. the contact problem for rough punches is studied as a Hertz type contact problem without employing additional assumptions of the multi-asperity approach. To obtain the solution, the method of non-linear boundary integral equations is developed. The problem is solved only on the fundamental domain for the parameter of self-similarity because solutions for other values of the parameter can be obtained by renormalization of this solution. It is shown that the problem has some features of chaotic systems, namely the global character of the solution is independent of fine distinctions between parametric-homogeneous functions describing roughness, while the stress field of the problem is sensitive to small perturbations of the punch shape.  相似文献   

20.
An applied model is developed for designing an inhomogeneous plate on an elastic half-space. The plate is discretized by the finite-element method and the half-space by the boundary-element method. The model allows us to evaluate the stress–strain state of the plate immediately under a die, whose dimensions are comparable with the plate's cross section. The plate may be inhomogeneous across the thickness and in plan. Separation of the plate from the elastic base is possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号