首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficiency of Laurus nobilis leaves?? extract as a corrosion inhibitor for mild steel in acidic medium (1?M H2SO4) was investigated by use of the electrochemical techniques potentiodynamic polarization, electrochemical impedance spectroscopy, and polarization resistance measurements. According to the experimental results, L. nobilis extract acts as a good corrosion inhibitor. In the presence of the inhibitor, corrosion potential shifted toward a more negative value than for the blank solution. Inhibitor efficiency increased with increasing inhibitor concentration, as expected. According to the potentiodynamic polarization results the corrosion of mild steel increased with increasing temperature both in the presence and absence of the inhibitor. The activation energy (E a) of the corrosion process was calculated from the variation of corrosion current density with temperature.  相似文献   

2.
The efficiency of Acacia cyanophylla leaves extract as an environmentally friendly inhibitor for mild steel in aerated aqueous 1 M H2SO4 solution has been investigated by potentiodynamic polarization measurements and electrochemical impedance spectroscopy techniques. Addition of inhibitor decreases the corrosion current whereas the corrosion potential values show slight shifts in positive directions. Inhibition efficiency was found to be about 93% (the maximum value was determined from the polarization curve). Efficiencies obtained from both electrochemical techniques are in good agreement. Adsorption of Acacia cyanophylla leaves extract on mild steel surface in 1 M H2SO4 solution obeys Langmuir adsorption isotherm. Polarization curves were also obtained at different temperatures in order to measure changes of corrosion rate. Corrosion current increases and inhibition efficiency decreases with temperature increasing in H2SO4 solutions with and without Acacia cyanophylla extract. Corrosion parameters also changed with exposure time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
An extract of Mentha rotundifolia leaves (EMRL) was tested as a corrosion inhibitor of steel in 1 M HCl using electrochemical impedance spectroscopy, Tafel polarization methods, and weight loss measurements. The inhibition efficiency of the extract of Mentha rotundifolia leaves was calculated and compared. We note good agreement between these methods. The results obtained revealed that the inhibitor tested differently reduced the kinetics of the corrosion process of steel. Its efficiency increases with the concentration and attained 92.87 % at 35 %. The effect of temperature on the corrosion behavior of steel in 1 M HCl was also studied in the range 298 and 338 K. The thermodynamic data of activation were determined. Mentha rotundifolia extract is adsorbed on the steel surface according to a Langmuir adsorption model.  相似文献   

4.
The corrosion inhibitive and adsorption behaviors of Hydroclathrus clathratus on mild steel in 1 M HCl and 1 M H2SO4 solutions at 303, 313 and 323 K were investigated by weight loss, electrochemical, and surface analysis techniques. The results show that H. clathratus acts as an inhibitor of corrosion of mild steel in acid media. The inhibition efficiency was found to increase with increase in inhibitor concentration but to decrease with rise in temperature, suggestive of physical adsorption. The adsorption of the inhibitor onto the mild steel surface was found to follow the Temkin adsorption isotherm. The inhibition mechanism was further corroborated by the results obtained from electrochemical methods. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses supported the inhibitive action of the alga against acid corrosion of mild steel.  相似文献   

5.
The corrosion inhibition of mild steel in 0.5 M H2SO4 solution by the extract of litchi peel (Litchi chinensis) was studied by weight loss method, potentiodynamics polarization and electrochemical impedance spectroscopy (EIS). The results show that the litchi peels extract acts as mixed-type inhibitor. The inhibition of corrosion is found to be due to adsorption of the extract on metal surface, which is in conformity with Langmuir’s adsorption isotherm. UV–Vis, Fourier transform infrared (FT-IR) spectroscopy and Scanning electron microscopy (SEM) studies confirm that the inhibition of corrosion of mild steel occurs through adsorption of the inhibitor molecules.  相似文献   

6.
An extract of cucumber leaves (ECSL) was prepared as a green corrosion inhibitor for carbon steel. Its carbon steel corrosion inhibition performance against 0.5 mol L−1 H2SO4 was investigated using electrochemical methods and scanning electron microscopy (SEM). Its composition was analyzed by gas chromatography and mass spectroscopy (GC−MS). Quantum chemical calculations and molecular dynamics simulations (MDS) were conducted to elucidate the adsorption mechanism of the inhibitor molecules on the carbon steel surface. The results indicated that the inhibition efficiency increases with its increasing concentration. The extract acted as a mixed type corrosion inhibitor, and its inhibition properties were ascribed to the geometric coverage effect induced by its adsorption on the metal surface in accordance with Langmuir’s law. The active components in the extract were identified as mainly organic compounds with functional groups such as aromatic moieties and heteroatoms. The inhibition activities of ECSL are delivered through the ability of the active components to adsorb on the metal surface through their functional groups to form a protective layer which hinders the contact of aggressive substances with carbon steel and thus suppresses its corrosion. This research provides an important reference for the design of green corrosion inhibitors based on plant waste materials.  相似文献   

7.
The inhibition of the corrosion of mild steel in hydrochloric acid solution by the seed extract of Karanj (Pongamia pinnata) has been studied using weight loss, electrochemical impedance spectroscopy, potentiodynamic polarization, and linear polarization techniques. Inhibition was found to increase with increasing concentration of the extract. The effect of temperature, immersion time, and acid concentration on the corrosion behavior of mild steel in 1 M HCl with addition of extract was also studied. The adsorption of the extract on the mild steel surface obeyed the Langmuir adsorption isotherm. Values of inhibition efficiency calculated from weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy are in good agreement. Polarization curves showed that Karanj (P. pinnata) seed extract behaves as a mixed-type inhibitor in hydrochloric acid. The activation energy as well as other thermodynamic parameters for the inhibition process was calculated. The adsorbed film on mild steel surface containing Karanj (P. pinnata) seed extract inhibitor was also measured by Fourier transform infrared spectroscopy. The results obtained showed that the seed extract of Karanj (P. pinnata) could serve as an effective inhibitor of the corrosion of mild steel in hydrochloric acid media.  相似文献   

8.
The corrosion of reinforced steel in concrete in 3.5 % NaCl without and with Prosopis juliflora extract at different time intervals has been studied using various techniques including electrochemical impedance spectroscopy (EIS), potentiodynamic polarization study (PDS) and atomic force microscopy (AFM). The results obtained by electrochemical measurements (EIS and PDS) showed that the extract inhibited corrosion by forming a protective layer on the surface of the embedded steel and by altering the reactions of the cathodic and anodic sites of the steel. Further, the AFM images supported the formation of the protective layer over the surface of the embedded steel by inhibitor molecules. The adsorption of the inhibitor molecules over the surface of the embedded steel obeyed the Temkin isotherm. Density functional theory (DFT) calculations for major ingredients of the extract have been carried out. From the results of the DFT calculations, the influence of major ingredients on the anti–corrosion potential of the plant extract has been correlated. The mechanism of inhibitive action of the P. juliflora extract has also been proposed.  相似文献   

9.
Plant extracts are currently being used as eco-friendly corrosion inhibitors. In this study, the inhibitive performance of Xylocarpus Moluccensis extract (XME) was used as an eco-friendly corrosion inhibitor for the first time. The extract was studied using electrochemical measurement on mild steel in 1M HCl. Results from FIR and phytochemical confirmed that Xylocarpus Moluccensis extract contains compound hydroxyl group, phenolic, and flavonoid content which can be used as a corrosion inhibitor. The inhibition efficiency was determined using Tafel polarization and electrochemical impedance spectroscopy and showed 68% efficiency in 500 ppm. Langmuir adsorption isotherm was used to determine the adsorption mechanism of XME. Surface characterization (AFM) was also used to study the surface morphology of protective film inhibitors.  相似文献   

10.
Natural-based corrosion inhibitors have gained great research interest thanks to their low cost and higher performance. In this work, the chemical composition of the methanolic extract of Ammi visnaga umbels (AVU) was evaluated by gas chromatography (GC) coupled with mass spectrometry (MS) and applied for corrosion inhibition of carbon steel (CS) in 1.0 mol/L HCl using chemical and electrochemical techniques along with scanning electron microscope (SEM) and theoretical calculations. A total of 46 compounds were identified, representing 89.89% of the overall chemical composition of AVU extract, including Edulisin III (72.88%), Binapacryl (4.32%), Khellin (1.97%), and Visnagin (1.65%). Chemical (Weight loss) and electrochemical (potentiodynamic polarization curves (PPC), and electrochemical impedance spectroscopy (EIS)) techniques revealed that investigated extract can be used as an effective corrosion inhibitor for carbon steel in 1.0 mol/L HCl solution. At a low dose of 700 ppm, the inhibitory action of AVU extract reached an inhibition efficiency of 84 percent. According to polarization tests, the investigated extract worked as a mixed inhibitor, protecting cathodic and anodic corrosion reactions. The EIS test showed that upon the addition of AVU extract to HCl solution, the polarization resistance increased while the double layer decreased. SEM images showed a protected CS surface in the inhibited solution. Quantum chemical calculations by Density Functional Theory (DFT) for the main components confirmed the major role of heteroatoms and aromatic rings as adsorption sites. Molecular dynamics (MD) simulation was used to study the adsorption configuration of the main components on the Fe(1 1 0) surface. Outcomes from this study further confirmed the significant advantage of using plant-based corrosion inhibitors for protecting metals and alloys.  相似文献   

11.
Extract of natural plants is one of the most important metallic corrosion inhibitors. They are readily available, nontoxic, environmentally friendly, biodegradable, highly efficient, and renewable. The present project focuses on the corrosion inhibition effects of Peganum Harmala leaf extract. The equivalent circuit with two time constants with film and charge transfer components gave the best fitting of impedance data. Extraction of active species by sonication proved to be an effective new method to extract the inhibitors. High percent inhibition efficacy IE% of 98% for 283.4 ppm solutions was attained using impedance spectroscopy EIS measurements. The values of charge transfer Rct increases while the double layer capacitance Cdl values decrease with increasing Harmal extract concentration. This indicates the formation of protective film. The polarization curves show that the Harmal extract acts as a cathodic-type inhibitor. It is found that the adsorption of Harmal molecules onto the steel surface followed Langmuir isotherm. Fourier-transform infrared spectroscopy FTIR was used to determine the electron-rich functional groups in Harmal extract, which contribute to corrosion inhibition effect. Scanning electron microscopy SEM measurement of a steel surface clearly proves the anticorrosion effect of Harmal leaves.  相似文献   

12.
Abstract

The present study investigated the adsorption and inhibition behavior of leaf extract of Tephrosia Purpurea (T. purpurea) on mild steel corrosion in 1?N H2SO4 solution using electrochemical and surface morphological methods. Techniques adopted for electrochemical studies were Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy (EIS) technique; and surface morphological studies were carried out using Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM). The leaf extract of T. purpurea was characterized using UV-Visible spectroscopy (UV-Vis), Fourier-Transform Infrared Spectroscopy (FT-IR), Nuclear Magnetic Resonance Spectroscopy (NMR) and Gas Chromatography – Mass Spectrometry (GCMS). The results obtained from electrochemical studies exhibited the potential of T. purpurea as good corrosion inhibitor. And, it was found that, the inhibition efficiency (I.E in %) increases with increase in concentration of the inhibitor molecules, the optimum inhibitor concentration observed was 300?ppm and the inhibition efficiency of 93% was observed at this inhibitor concentration. Above 300?ppm, there was not much changes in inhibition efficiency. Polarization studies provided the information that the inhibition is of mixed type and EIS confirmed that the corrosion process is controlled by single charge transfer mechanism. And, it was obtained that, the adsorption of inhibitor molecules obeys Langmuir adsorption isotherm. The inhibition is mainly by the adsorption of inhibitor molecules on the mild steel electrode surface, which was confirmed by FT-IR, SEM and AFM studies. Through all the experimental results, it can be arrived that, the leaf extract of T. purpurea performed as a good corrosion inhibitor for mild steel in 1?N sulfuric acid medium.  相似文献   

13.
A new corrosion inhibitor, namely acid extract of leaves of Hibiscus sabdariffa, has been synthesized, and its inhibiting action on the corrosion of mild steel in acidic bath (1.2 N HCl and 1.2 N H2SO4) has been investigated by corrosion-monitoring techniques. The results of the present study show that this compound has decent inhibiting property for mild steel corrosion in 1.2 N H2SO4 than 1.2 N HCl. Four sorption isotherms are tested for the data, namely Langmuir, Frumkin, Florry–Huggins, and Langmuir–Freundlich isotherms; of these the Langmuir isotherm fits the data well having correlation coefficient over 0.99 in both the acid environments.  相似文献   

14.
《印度化学会志》2021,98(9):100128
We reported here, the corrosion inhibition of carbon steel (CS) in H2SO4 media by Ficus carica leaves extract as green sustainable inhibitor. This study was investigated using mass loss method (ML), potentiodynamic polarization (PDP), electrochemical frequency modulation (EFM) and electrochemical impedance spectroscopy (EIS). As well as the metal surface morphology was analyzed by Atomic Force Microscopy (AFM). In addition, the chemical characterization of green inhibitor is carried out by Fourier Transform Infrared (FTIR). EIS revealed that the Ficus carica extract formed a thin protective film on the metal surface and by using of 300 ​ppm of extract of Ficus carica allow reaches (92.7%) of corrosion inhibition efficiency (CIE). The PDP curves revealed that the Ficus carica extract act as a mixed-type inhibitor. It was demonstrated that %IE enhanced with rising the Ficus carica extract doses also increased with arises in temperature (95.7%). Kinetic parameters and thermodynamic adsorption of the system have also been measured and studied. The data obtained revealed that the adsorption of Ficus carica on metal surface followed the Temkin isotherm and according to the activation energy (Ea1) the Ficus carica extract acts by chemisorption process. The results from unlike measurements were in a well accord.  相似文献   

15.
The efficiency of hexa methylene diamine tetra methyl-phosphonic acid (HMDTMP), as corrosion inhibitor for carbon steel in 0.5 M HCl, has been determined by gravimetric and electrochemical measurements. Polarization curves indicate that the compound is a mixed inhibitor, affecting both cathodic and anodic corrosion currents. Adsorption of HMDTMP derivatives on the carbon steel surface is in agreement with the Langmuir adsorption isotherm model, and the calculated Gibbs free energy value confirms the chemical nature of the adsorption. EIS results show that the charge in the impedance parameters (Rt and Cdl) with concentrations of HMDTMP is indicative. The adsorption of this molecule leads to the formation of a protective layer on carbon steel surface. The electrochemical results have also been supplemented by surface morphological studies.  相似文献   

16.
The effect of triphenyltin2–thiophene carboxylate (TTC) on the corrosion of steel in hydrochloric acid medium was studied using gravimetric, electrochemical polarisation and electrochemical impedance spectroscopy (EIS) measurements. The percentage inhibition efficiency was found to increase with increasing concentration of inhibitor to reach 97% at 10?3 M. Polarisation study shows that TTC is an efficient inhibitor and acts as a mixed-type inhibitor. EIS results indicate the increase of resistance transfer (RT) and the decrease of double layer capacitance (Cdl) with TTC concentration. Triphenyltin2–thiophene carboxylate molecules lead to the formation of a protective layer on the surface of steel. The inhibitor is adsorbed on the steel surface according to Langmuir isotherm.  相似文献   

17.
Artabotrys odoratissimus inhibitory effect on mild steel (MS) corrosion in 0.5 M H2SO4 solution has been assessed utilizing mass loss, electrochemical potentiodynamic polarization, and impedance spectroscopy techniques. The Artabotrys odoratissimus plant has a wide range of bioactive compounds. Phytochemicals were tested for ethanolic Artabotrys odoratissimus leaves extract (AOLE) using the FeCl3 test, Salkowaski's test, and others. Corrosion tests were conducted at varying inhibitor concentrations and temperatures. The inhibitory impact of AOLE on corrosion of MS was reported to improve with increasing concentration. Polarization experiments revealed that AOLE is a mixed kind of inhibitor and the inhibition efficacy w) for MS is 93.27% for 1.25 g/L AOLE. For Electrochemical impedance spectroscopy (EIS), maximal inhibitory efficacy w) was 91.62% due to AOLE adsorption on the MS surface. The obtained results using each methodology are highly consistent and closely resemble each other. The adsorption of AOLE molecules on an MS surface from the bulk of the solution causes the inhibitor's inhibition action, and the adsorption mechanism follows Langmuir adsorption isotherm. The computed ΔGadso values ranged between ?32.919 and ?33.520 kJ mol?1, implying a spontaneous and exothermic inhibitory action. The thermodynamic and activation parameters are often used to understand corrosion inhibition mechanisms. The comparison of corrosion product and pure extract FT-IR spectrum indicates the nature of AOLE adsorption on the MS surface. The surface morphology of MS samples was assessed using atomic force microscopy (AFM), scanning electron microscope (SEM), and contact angle techniques.  相似文献   

18.
Abstract

The inhibitive and adsorptive characteristics of ethanol extract of Gnetum Africana for the corrosion of mild steel in H2SO4 solutions have been studied using weight loss, gasometric, thermometric, and IR methods of monitoring corrosion. Ethanol extract of Gnetum Africana is a good adsorption inhibitor for the corrosion of mild steel in H2SO4. The inhibitive property of the extract is attributed to the presence of alkaloid, saponin, tannin, terpene, anthraquinone, cardiac glycoside, and alkaloid in the extract. The adsorption of the inhibitor on mild steel surface is exothermic, spontaneous and is consistent with the mechanism of physical adsorption. In addition, Langmuir and Temkin adsorption isotherms best described the adsorption characteristics of the inhibitor. Efforts to improve the adsorption of the inhibitor through synergistic combinations with halides indicated that only KCl may enhance the efficiency of the inhibitor. The study provides information on the use of ethanol extract of Gnetum Africana as a corrosion inhibitor for mild steel.  相似文献   

19.
Recently, the hydrolysis of Schiff bases under experimental conditions gives suspicion for their corrosion inhibition performance. The current study employs a stable Schiff base namely, 2,2′-{propane-1,3-diylbis[azanylylidene (E) methanylylidene]}bis(6-methoxyphenol) (LPD) as corrosion inhibitor for mild steel (MS) in 1 M HCl solution. The presence of the characteristic peak of the imine group in UV-visible spectra was taken as an indicator for LPD stability in acidic media. The inhibition action was examined using electrochemical techniques including potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) besides gravimetric measurement. The inhibition efficiency reached 95.93 % for 0.75 mM LPD after 24 h of immersion at 25 °C. This high efficiency is owing to the presence of the characteristic imine group and other heteroatoms and π- electrons of the aromatic benzene rings. The mechanism of inhibition depends on adsorption phenomena on mild steel surface which obeys Langmuir isotherm model. The calculated values of adsorption equilibrium constant (Kads), adsorption free energy ΔGads, adsorption enthalpy ΔHads and adsorption entropy ΔSads indicated spontaneous exothermic adsorption process of both physical and chemical nature. By rising temperature, the inhibition efficiency of LPD was decreased. The calculated activation energy was increased as the concentration of LPD increased. LPD was considered as a mixed-type inhibitor as indicated from PDP measurements. The obtained surface morphology and composition analysis using SEM/EDS, AFM and FTIR techniques ensures the high efficiency of LPD as corrosion inhibitor.  相似文献   

20.
Abstract

The corrosion inhibition and adsorption properties of Neem (Azadirachta indica – AZI) mature leaves extract as a green inhibitor of mild steel (MS) corrosion in nitric acid (HNO3) solutions have been studied using a gravimetric technique for experiments conducted at 30 and 60°C. The results disclose that the different concentrations of the AZI extract inhibit MS corrosion and that inhibition efficiency of the extract varies with concentration and temperature. For extract concentrations studied and ranging from 9.09 to 28.57 mg/L, the maximum inhibition efficiency was 80.5 and 80.07% both at 28.57 mg/L AZI at 30 and 60°C, respectively, in 2.0 N HNO3. The adsorption of the inhibitor on the MS surface was exothermic and consistent with the physical adsorption mechanism, best described by the Frumkin adsorption isotherm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号