首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let X be a completely regular Hausdorff space, A be a unital locally convex algebra with jointly continuous multiplication and C(X,A) be the algebra of all continuous A-valued functions on X equipped with the topology of \({\mathcal{K}(X)}\) -convergence. Moreover, let \({\mathfrak{M}_{\ell}(A)}\) and \({\mathfrak{M}(A)}\) denote the set of all closed maximal left and two-sided ideals in A, respectively. In this note, we describe all closed maximal left and two-sided ideals in C(X,A) and show that there exist bijections from \({\mathfrak{M}_{\ell}(C(X, A))}\) onto \({X \times \mathfrak{M}_{\ell}(A)}\) and \({\mathfrak{M}(C(X, A))}\) onto \({X \times \mathfrak{M}(A)}\) . We also present new characterizations of closed maximal ideals in C(X, A) when A is a unital commutative locally convex Gelfand–Mazur algebra with jointly continuous multiplication.  相似文献   

2.
For a given class \({\mathcal{G}}\) of groups, a 3-manifold M is of \({\mathcal{G}}\) -category \({\leq k}\) if it can be covered by k open subsets such that for each path-component W of the subsets the image of its fundamental group \({ \pi_1(W) \rightarrow \pi(M )}\) belongs to \({\mathcal{G}}\) . The smallest number k such that M admits such a covering is the \({\mathcal{G}}\) -category, \({cat_{\mathcal{G}}(M)}\) . If M is closed, it has \({\mathcal{G}}\) -category between 1 and 4. We characterize all closed 3-manifolds of \({\mathcal{G}}\) -category 1, 2, and 3 for various classes \({\mathcal{G}}\) .  相似文献   

3.
Let ${\pi=(d_{1},d_{2},\ldots,d_{n})}$ and ${\pi'=(d'_{1},d'_{2},\ldots,d'_{n})}$ be two non-increasing degree sequences. We say ${\pi}$ is majorizated by ${\pi'}$ , denoted by ${\pi \vartriangleleft \pi'}$ , if and only if ${\pi\neq \pi'}$ , ${\sum_{i=1}^{n}d_{i}=\sum_{i=1}^{n}d'_{i}}$ , and ${\sum_{i=1}^{j}d_{i}\leq\sum_{i=1}^{j}d'_{i}}$ for all ${j=1,2,\ldots,n}$ . If there exists one connected graph G with ${\pi}$ as its degree sequence and ${c=(\sum_{i=1}^{n}d_{i})/2-n+1}$ , then G is called a c-cyclic graph and ${\pi}$ is called a c-cyclic degree sequence. Suppose ${\pi}$ is a non-increasing c-cyclic degree sequence and ${\pi'}$ is a non-increasing graphic degree sequence, if ${\pi \vartriangleleft \pi'}$ and there exists some t ${(2\leq t\leq n)}$ such that ${d'_{t}\geq c+1}$ and ${d_{i}=d'_{i}}$ for all ${t+1\leq i\leq n}$ , then the majorization ${\pi \vartriangleleft \pi'}$ is called a normal majorization. Let μ(G) be the signless Laplacian spectral radius, i.e., the largest eigenvalue of the signless Laplacian matrix of G. We use C π to denote the class of connected graphs with degree sequence π. If ${G \in C_{\pi}}$ and ${\mu(G)\geq \mu(G')}$ for any other ${G'\in C_{\pi}}$ , then we say G has greatest signless Laplacian radius in C π . In this paper, we prove that: Let π and π′ be two different non-increasing c-cyclic (c ≥ 0) degree sequences, G and G′ be the connected c-cyclic graphs with greatest signless Laplacian spectral radii in C π and C π', respectively. If ${\pi \vartriangleleft \pi'}$ and it is a normal majorization, then ${\mu(G) < \mu(G')}$ . This result extends the main result of Zhang (Discrete Math 308:3143–3150, 2008).  相似文献   

4.
We consider two Riemannian geometries for the manifold \({\mathcal{M }(p,m\times n)}\) of all \(m\times n\) matrices of rank \(p\) . The geometries are induced on \({\mathcal{M }(p,m\times n)}\) by viewing it as the base manifold of the submersion \(\pi :(M,N)\mapsto MN^\mathrm{T}\) , selecting an adequate Riemannian metric on the total space, and turning \(\pi \) into a Riemannian submersion. The theory of Riemannian submersions, an important tool in Riemannian geometry, makes it possible to obtain expressions for fundamental geometric objects on \({\mathcal{M }(p,m\times n)}\) and to formulate the Riemannian Newton methods on \({\mathcal{M }(p,m\times n)}\) induced by these two geometries. The Riemannian Newton methods admit a stronger and more streamlined convergence analysis than the Euclidean counterpart, and the computational overhead due to the Riemannian geometric machinery is shown to be mild. Potential applications include low-rank matrix completion and other low-rank matrix approximation problems.  相似文献   

5.
6.
The overlap, \({\mathcal{D}_N}\) , between the ground state of N free fermions and the ground state of N fermions in an external potential in one spatial dimension is given by a generalized Gram determinant. An upper bound is \({\mathcal{D}_N\leq\exp(-\mathcal{I}_N)}\) with the so-called Anderson integral \({\mathcal{I}_N}\) . We prove, provided the external potential satisfies some conditions, that in the thermodynamic limit \({\mathcal{I}_N = \gamma\ln N + O(1)}\) as \({N\to\infty}\) . The coefficient γ > 0 is given in terms of the transmission coefficient of the one-particle scattering matrix. We obtain a similar lower bound on \({\mathcal{D}_N}\) concluding that \({\tilde{C} N^{-\tilde{\gamma}} \leq \mathcal{D}_N \leq CN^{-\gamma}}\) with constants C, \({\tilde{C}}\) , and \({\tilde{\gamma}}\) . In particular, \({\mathcal{D}_N\to 0}\) as \({N\to\infty}\) which is known as Anderson’s orthogonality catastrophe.  相似文献   

7.
Let \({f(z) = \sum_{n=1}^\infty a(n)e^{2\pi i nz} \in S_k^{\mathrm{new}}(\Gamma_0(N))}\) be a newform of even weight \({k \geq 2}\) that does not have complex multiplication. Then \({a(n) \in \mathbb{R}}\) for all n; so for any prime p, there exists \({\theta_p \in [0, \pi]}\) such that \({a(p) = 2p^{(k-1)/2} {\rm cos} (\theta_p)}\) . Let \({\pi(x) = \#\{p \leq x\}}\) . For a given subinterval \({[\alpha, \beta]\subset[0, \pi]}\) , the now-proven Sato–Tate conjecture tells us that as \({x \to \infty}\) , $$ \#\{p \leq x: \theta_p \in I\} \sim \mu_{ST} ([\alpha, \beta])\pi(x),\quad \mu_{ST} ([\alpha, \beta]) = \int\limits_{\alpha}^\beta \frac{2}{\pi}{\rm sin}^2(\theta) d\theta. $$ Let \({\epsilon > 0}\) . Assuming that the symmetric power L-functions of f are automorphic, we prove that as \({x \to \infty}\) , $$ \#\{p \leq x: \theta_p \in I\} = \mu_{ST} ([\alpha, \beta])\pi(x) + O\left(\frac{x}{(\log x)^{9/8-\epsilon}} \right), $$ where the implied constant is effectively computable and depends only on k,N, and \({\epsilon}\) .  相似文献   

8.
Let \({s = \{s_{jk}\}_{0 \leq j+k \leq 3}}\) be a given complex-valued sequence. The cubic complex moment problem involves determining necessary and sufficient conditions for the existence of a positive Borel measure \({\sigma}\) on \({\mathbb{C}}\) (called a representing measure for s) such that \({s_{jk} = \int_{\mathbb{C}}\bar{z}^j z^k d\sigma(z)}\) for \({0 \leq j + k \leq 3}\) . Put $$\Phi = \left(\begin{array}{lll} s_{00} & s_{01} & s_{10} \\s_{10} & s_{11} & s_{20} \\s_{01} & s_{02} & s_{11}\end{array}\right), \quad \Phi_z = \left(\begin{array}{lll}s_{01} & s_{02} & s_{11} \\s_{10} & s_{12} & s_{21} \\s_{02} & s_{03} & s_{12}\end{array} \right)\quad {\rm and}\quad\Phi_{\bar{z}} = (\Phi_z)^*.$$ If \({\Phi \succ 0}\) , then the commutativity of \({\Phi^{-1} \Phi_z}\) and \({\Phi^{-1} \Phi_{\bar{z}}}\) is necessary and sufficient for the existence a 3-atomic representing measure for s. If \({\Phi^{-1} \Phi_z}\) and \({\Phi^{-1} \Phi_{\bar{z}}}\) do not commute, then we show that s has a 4-atomic representing measure. The proof is constructive in nature and yields a concrete parametrization of all 4-atomic representing measures of s. Consequently, given a set \({K \subseteq \mathbb{C}}\) necessary and sufficient conditions are obtained for s to have a 4-atomic representing measure \({\sigma}\) which satisfies \({{\rm supp} \sigma \cap K \neq \emptyset}\) or \({{\rm supp} \sigma \subseteq K}\) . The cases when \({K = \overline{\mathbb{D}}}\) and \({K = \mathbb{T}}\) are considered in detail.  相似文献   

9.
First, we study constructible subsets of \({\mathbb{A}^n_k}\) which contain a line in any direction. We classify the smallest such subsets in \({\mathbb{A}^3}\) of the type \({R \cup \{g \neq 0\},}\) where \({g \in k[x_1,\ldots, x_n]}\) is irreducible of degree d and \({R \subset V(g)}\) is closed. Next, we study subvarieties \({X \subset \mathbb{A}^N}\) for which the set of directions of lines contained in X has the maximal possible dimension. These are variants of the Kakeya problem in an algebraic geometry context.  相似文献   

10.
Let \({\mathcal{P}}\) be an ideal of closed quotients of a completely regular frame L and \({\mathcal{R}_{\mathcal{P}}(L)}\) the collection of all functions in the ring \({\mathcal{R}(L)}\) whose support belong to \({\mathcal{P}}\) . We show that \({\mathcal{R}(L)}\) is a Noetherian ring if and only if \({\mathcal{R}(L)}\) is an Artinian ring if and only if L is a finite frame. Using this result, we next show that if \({\mathcal{P}}\) is the ideal of all compact closed quotients of L and L is \({\mathcal{P}}\) -continuous, then \({\mathcal{R}_{\mathcal{P}}(L)}\) is a Noetherian ring if and only if L is finite. Moreover, we show that L is a P-frame if and only if each ideal of \({\mathcal{R}(L)}\) is of the form \({\mathcal{R}_{\mathcal{P}}(L)}\) for some choice of \({\mathcal{P}}\) . We furnish equivalent conditions for \({\mathcal{R}_{\mathcal{P}}(L)}\) to be a prime ideal, a free ideal, and an essential ideal of \({\mathcal{R}(L)}\) separately in terms of the cozero elements of L. Finally, we show that L is basically disconnected if and only if \({\mathcal{R}(L)}\) is a coherent ring.  相似文献   

11.
12.
Let G be a connected complex Lie group and Γ a cocompact lattice in G. Let H be a connected reductive complex affine algebraic group and \({\rho\, : \Gamma\, \longrightarrow H}\) a homomorphism such that \({\rho(\Gamma)}\) is not contained in some proper parabolic subgroup of H. Let \({E^\rho_H}\) be the holomorphic principal H–bundle on G/Γ associated to ρ. We prove that \({E^\rho_H}\) is polystable. If ρ satisfies the further condition that \({\rho(\Gamma)}\) is contained in a compact subgroup of H, then we prove that \({E^\rho_H}\) is stable.  相似文献   

13.
In this paper we introduce a class of functions contained in the disc algebra \({\mathcal{A}(D)}\) . We study functions \({f \in \mathcal{A}(D)}\) which have the property that the continuous periodic function \({u = {\rm Re}f|_{\mathbb{T}}}\) , where \({\mathbb{T}}\) is the unit circle, is nowhere differentiable. We prove that this class is non-empty and instead, generically, every function \({f \in \mathcal{A}(D)}\) has the above property. Afterwards, we strengthen this result by proving that, generically, for every function \({f \in \mathcal{A}(D)}\) , both continuous periodic functions \({u = {\rm Re}f|_\mathbb{T}}\) and \({\tilde{u} = {\rm Im}f|_\mathbb{T}}\) are nowhere differentiable. We avoid any use of the Weierstrass function and we mainly use Baire’s Category Theorem.  相似文献   

14.
For a map \({S : X \to X}\) and an open connected set (= a hole) \({H \subset X}\) we define \({\mathcal{J}_H(S)}\) to be the set of points in X whose S-orbit avoids H. We say that a hole H 0 is supercritical if
  1. for any hole H such that \({\overline{H}_0 \subset H}\) the set \({\mathcal{J}_H(S)}\) is either empty or contains only fixed points of S;
  1. for any hole H such that \({\overline{H} \subset H_0}\) the Hausdorff dimension of \({\mathcal{J}_H(S)}\) is positive.
The purpose of this note is to completely characterize all supercritical holes for the doubling map Tx =  2x mod 1.  相似文献   

15.
An additive coloring of a graph G is an assignment of positive integers \({\{1,2,\ldots ,k\}}\) to the vertices of G such that for every two adjacent vertices the sums of numbers assigned to their neighbors are different. The minimum number k for which there exists an additive coloring of G is denoted by \({\eta (G)}\) . We prove that \({\eta (G) \, \leqslant \, 468}\) for every planar graph G. This improves a previous bound \({\eta (G) \, \leqslant \, 5544}\) due to Norin. The proof uses Combinatorial Nullstellensatz and the coloring number of planar hypergraphs. We also demonstrate that \({\eta (G) \, \leqslant \, 36}\) for 3-colorable planar graphs, and \({\eta (G) \, \leqslant \, 4}\) for every planar graph of girth at least 13. In a group theoretic version of the problem we show that for each \({r \, \geqslant \, 2}\) there is an r-chromatic graph G r with no additive coloring by elements of any abelian group of order r.  相似文献   

16.
We consider the expansion of a convex closed plane curve C 0 along its outward normal direction with speed G(1/k), where k is the curvature and \({G \left(z \right) :\left(0, \infty \right) \rightarrow \left( 0, \infty \right)}\) is a strictly increasing function. We show that if \({{\rm lim}_{z \rightarrow \infty} G \left(z \right) = \infty}\) , then the isoperimetric deficit \({D \left(t \right) : = L^{2}\left(t \right) -4 \pi A \left(t \right)}\) of the flow converges to zero. On the other hand, if \({{\rm lim}_{z \rightarrow \infty}G \left(z \right) = \lambda \in (0,\infty)}\) , then for any number d ≥ 0 and \({\varepsilon > 0}\) , one can choose an initial curve C 0 so that its isoperimetric deficit \({D \left(t \right)}\) satisfies \({\left \vert D \left(t \right) -d \right \vert < \varepsilon}\) for all \({t \in [0, \infty)}\) . Hence, without rescaling, the expanding curve C t will not become circular. It is close to some expanding curve P t , where each P t is parallel to P 0. The asymptotic speed of P t is given by the constant \({\lambda}\) .  相似文献   

17.
Let G be an archimedean \({\ell}\) -group. By an f-representation of G we mean an orthomorphism-valued group homomorphism S on G for which (Sf)g =  (Sg)f for all \({f, g \in G}\) . We prove that the set \({\mathfrak{Rep}(G)}\) of all f-representations in G is an archimedean \({\ell}\) -group with respect to pointwise addition and ordering. Furthermore, we define an orthoproduct on G to be a bilinear map on G which is an orthomorphism in each variable separately. It turns out that the set \({\mathfrak{Opro}(G)}\) is an archimedean \({\ell}\) -group G with the set \({\mathfrak{Mult}(G)}\) of f-multiplications in G as a positive cone. Moreover, we show that \({\mathfrak{Opro}(G)}\) and \({\mathfrak{Rep}(G)}\) are isomorphic as \({\ell}\) -groups. In spite of that, we get a representation theorem for f-multiplications in an \({\ell}\) -subgroup of an archimedean f-ring R with unit element. This allows us to find an example of an archimedean \({\ell}\) -group with no nontrivial structure of an f-ring and another which cannot be a reduced f-ring.  相似文献   

18.
Let \({\phi(n)}\) denote the Euler-totient function. We study the error term of the general k-th Riesz mean of the arithmetical function \({\frac {n}{\phi(n)}}\) for any positive integer \({k \ge 1}\) , namely the error term \({E_k(x)}\) where $${\frac{1}{k!} \sum_{n \leq x} \frac{n}{\phi(n)} \left(1-\frac{n}{x}\right)^k = M_k(x) + E_k(x).}$$ The upper bound for \({| E_k(x)|}\) established here thus improves the earlier known upper bounds for all integers \({k\geq 1}\) .  相似文献   

19.
In the paper we introduce the new game—the unilateral \({\mathcal{P}}\) -colouring game which can be used as a tool to study the r-colouring game and the (r, d)-relaxed colouring game. Let be given a graph G, an additive hereditary property \({\mathcal {P}}\) and a set C of r colours. In the unilateral \({\mathcal {P}}\) -colouring game similarly as in the r-colouring game, two players, Alice and Bob, colour the uncoloured vertices of the graph G, but in the unilateral \({\mathcal {P}}\) -colouring game Bob is more powerful than Alice. Alice starts the game, the players play alternately, but Bob can miss his move. Bob can colour the vertex with an arbitrary colour from C, while Alice must colour the vertex with a colour from C in such a way that she cannot create a monochromatic minimal forbidden subgraph for the property \({\mathcal {P}}\) . If after |V(G)| moves the graph G is coloured, then Alice wins the game, otherwise Bob wins. The \({\mathcal {P}}\) -unilateral game chromatic number, denoted by \({\chi_{ug}^\mathcal {P}(G)}\) , is the least number r for which Alice has a winning strategy for the unilateral \({\mathcal {P}}\) -colouring game with r colours on G. We prove that the \({\mathcal {P}}\) -unilateral game chromatic number is monotone and is the upper bound for the game chromatic number and the relaxed game chromatic number. We give the winning strategy for Alice to play the unilateral \({\mathcal {P}}\) -colouring game. Moreover, for k ≥  2 we define a class of graphs \({\mathcal {H}_k =\{G|{\rm every \;block \;of\;}G \; {\rm has \;at \;most}\; k \;{\rm vertices}\}}\) . The class \({\mathcal {H}_k }\) contains, e.g., forests, Husimi trees, line graphs of forests, cactus graphs. Let \({\mathcal {S}_d}\) be the class of graphs with maximum degree at most d. We find the upper bound for the \({\mathcal {S}_2}\) -unilateral game chromatic number for graphs from \({\mathcal {H}_3}\) and we study the \({\mathcal {S}_d}\) -unilateral game chromatic number for graphs from \({\mathcal {H}_4}\) for \({d \in \{2,3\}}\) . As the conclusion from these results we obtain the result for the d-relaxed game chromatic number: if \({G \in \mathcal {H}_k}\) , then \({\chi_g^{(d)}(G) \leq k + 2-d}\) , for \({k \in \{3, 4\}}\) and \({d \in \{0, \ldots, k-1\}}\) . This generalizes a known result for trees.  相似文献   

20.
Doubly commuting invariant subspaces of the Bergman space and the Dirichlet space over the unit polydisc \({\mathbb{D}^n}\) (with \({n \geq 2}\) ) are investigated. We show that for any non-empty subset \({\alpha=\{\alpha_1,\ldots,\alpha_k\}}\) of \({\{1,\ldots,n\}}\) and doubly commuting invariant subspace \({\mathcal{S}}\) of the Bergman space or the Dirichlet space over \({\mathbb{D}^n}\) , restriction of the multiplication operator tuple on \({\mathcal{S}, M_{\alpha}|_\mathcal{S}:=(M_{z_{\alpha_1}}|_\mathcal{S},\ldots, M_{z_{\alpha_k}}|_\mathcal{S})}\) , always possesses generating wandering subspace of the form $$\bigcap_{i=1}^k(\mathcal{S}\ominus z_{\alpha_i}\mathcal{S})$$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号