首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two novel coordination complexes, namely, [Cd(2-NOA)2(TBZ)2] (1) and [Mn(2-NOA)2(H2O)2]n (2) (2-NOAH = 2-naphthoxyacetic acid), have been hydrothermally synthesized through the reaction of 2-naphthoxyacetic acid with or without N-donor ancillary coligand (thiabendazole, TBZ) in the presence of divalent transition-metal salts. Complex 1 is a zero-dimensional (0D) molecule, and the self-complementary C–H···O hydrogen bonds extend these molecules into a 2D supramolecular framework. In polymer 2, 2-NOA ? acts as a bridging ligand to bind Mn(II) ions to form a 2D supermolecular assembly. Also, IR spectra, powder X-ray diffraction, fluorescence properties and thermal decomposition process of complexes were investigated. The effect of the TBZ base ligand and the complex 1 on the antimicrobial activity against Candida albicans was studied.  相似文献   

2.
The kinetics of the interaction of dl-penicillamine with cis-[Pt(pipen)(OH2)2]2+ (pipen = 2-aminomethylpiperidine) have been investigated under pseudo-first-order conditions as a function of concentration and temperature at pH 4.0 in aqueous solution of 0.10 M NaClO4 using UV–Vis spectrophotometry. The kinetic study has been supported by isolation and characterization of the product by IR and ESI–MS spectroscopic analysis. Thermodynamic and kinetic parameters for the reaction have been evaluated. The DNA-binding properties, pKa values and substitution rates of such complexes can be tuned through the σ-donation properties of the spectator ligand, which leads to potential applications in cancer therapy.  相似文献   

3.
A series of silica-supported nickel catalyst precursors was synthesized with different SiO2/Ni mole ratios (0.20, 0.80 and 1.15). Non-isothermal reduction of Ni catalyst precursors was investigated by temperature-programmed reduction at four different heating rates (2, 5, 10 and 20 °C min?1), in a hydrogen atmosphere. Kinetic parameters (E a, A) were determined using Friedman isoconversional method. It was found that for all mole ratios, apparent activation energy is practically constant in conversion range of α = 30–70 %. In considered conversion range, the following values of apparent activation energy were found: E a = 129.5 kJ mol?1 (SiO2/Ni = 0.20), E a = 133.8 kJ mol?1 (SiO2/Ni = 0.80) and E a = 125.0 kJ mol?1 (SiO2/Ni = 1.15). Using two special functions (y(α) and z(α)), the kinetic model was determined. It was established that reduction of Ni catalyst precursors with different SiO2/Ni mole ratios is a complex process and can be described by two-parameter ?esták–Berggren (SB) autocatalytic model. Based on established values of SB parameters for each mole ratio, the possible mechanism was discussed. It was found that for all investigated ratios, the Weibull distribution function fits very well the experimental data, in the wide range of conversions (α = 5–95 %). Based on obtained values of Weibull shape parameter (θ), it was found that experimentally evaluated density distribution functions of the apparent activation energies can be approximated by the unbalanced peaked normal distribution.  相似文献   

4.
The present study on in vitro formation and characterization of lysozyme adduct with monocrotophos (MP) evaluates the potential of lysozyme to be used as a sensitive biomarker to monitor exposure levels to the commonly used organophosphorus pesticide monocrotophos. Crystallization of lysozyme protein adduct with monocrotophos was also undertaken to understand the adduct formation mechanism at a molecular level. The binding of organophosphorus pesticides to lysozyme is one of the key steps in their mutagenicity. The formation and structural characterization of lysozyme adduct with monocrotophos was done using MALDI-TOFMS, fluorescence, UV/Vis spectroscopy, circular dichroism, and X-ray diffraction studies. We report the crystal structure of lysozyme adduct with monocrotophos at 1.9 Å. It crystallized in the P43 space group with two monomers in one asymmetric unit having one molecule of monocrotophos bound to each protein chain. The results proved that the fluorescence quenching of lysozyme by monocrotophos is due to binding of monocrotophos with a tryptophan residue of lysozyme. Monocrotophos interacts most strongly with the Trp-108 and Asp-52 of lysozyme. The interactions of the monocrotophos molecule with the lysozyme suggest the formation of a stable adduct. In addition, the alteration of lysozyme secondary structure in the presence of monocrotophos was confirmed by circular dichroism and fluorescence inhibition of lysozyme by increasing monocrotophos and UV/Vis spectrophotometry. The formation of lysozyme adduct with monocrotophos was confirmed by MALDI-TOFMS. Figure
Crystal Structure of lysozyme adduct with monocrotophos (MP) [ PDB ID 4TUN) and Ligplots shows the monocrotophos bonding distances and interactions with amino acid residues in lysozyme  相似文献   

5.
The corrosion inhibition efficiency of 3-acetylpyridine-semicarbazide (3APSC) on carbon steel (CS) in 1.0 M HCl solution has been investigated using weight loss measurements, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies. The results show that inhibition efficiency on metal increases with the inhibitor concentration. 3APSC exhibited marked inhibition towards carbon steel in HCl medium even at low concentrations. The adsorption of inhibitor on the surfaces of the corroding metal obeys the Langmiur isotherm and thermodynamic parameters (K ads, ?G ads 0 ) were calculated. Activation parameters of the corrosion process (E a, ?H* and ?S*) were also calculated from the corrosion rates. Polarization studies revealed that 3APSC act as a mixed-type inhibitor. Surface analysis of the metal specimens was performed by scanning electron microscopy.  相似文献   

6.
In this study, we report here a general protocol for making core-shell magnetic Fe3O4/SiO2-MPS/MIPs (MPS = 3-(methacryloxyl) propyl trimethoxysilane, MIPs = molecularly imprinted polymers, Fe3O4/SiO2-MPS as core, MIPs as shell) via a surface molecular imprinting technique for optical detection of trace λ-cyhalothrin. The fluorescent molecularly imprinted polymer shell was first prepared by copolymerization of acrylamide with a small quantity of allyl fluorescein in the presence of λ-cyhalothrin to form recognition sites without doping. The magnetic Fe3O4/SiO2-MPS/MIPs exhibited paramagnetism, high fluorescence intensity, and highly selective recognition. Using fluorescence quenching as a detecting tool, Fe3O4/SiO2-MPS/MIPs were successfully applied to selectively and sensitively detect λ-cyhalothrin, and a linear relationship could be obtained covering a wide concentration range of 0–50 nM with a correlation coefficient of 0.9962 described by the Stern-Volmer equation. The experimental results of practical detection revealed that magnetic Fe3O4/SiO2-MPS/MIPs as an attractive recognition element was satisfactory for determination of trace λ-cyhalothrin in honey samples. This study, therefore, demonstrated the potential of MIPs for detection of λ-cyhalothrin in food.  相似文献   

7.
Combination therapy is considered a viable strategy to overcome the resistance to chemotherapeutics. Survivin as a member of the inhibitor of apoptosis protein (IAP) family, which is involved in resistance to various drugs. We investigated the role of combination therapy in downregulating survivin and increasing drug’s efficacy in MDA-MB-231 cells. MTT assay and DAPI staining were applied to study the anti-proliferative activity and apoptosis response of the agents. Real-time RT-PCR and Western blot analysis were applied to study survivin mRNA and protein. Our findings showed that combined treatment of cells with docetaxel and vinblastine reduces survivin expression and consequently decreases the IC50 value of docetaxel from 70 to 5 nM (p?p?相似文献   

8.
The kinetics of small-angle X-ray scattering (SAXS) was assessed in the room temperature ionic liquid (RTIL)–x mol% H2O system, where the RTIL is N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate, [DEME][BF4]. During equilibration of a non-equilibrium state, the largest time evolution of SAXS was observed at approximately 90 mol% H2O. Above 85 mol% (x c), the SAXS intensity increased gradually for 24 h. For the larger q region, the prepeak and principal peak in X-ray diffraction patterns have no time dependence in the water-rich region (70–91 mol%). The long time relaxation process observed in SAXS was related to the outstanding pH oscillations at 90–95 mol% over several days in the [DEME][BF4]–water system. The x c for nonequilibrium anomalies is related to the equilibrated crossover concentration from 65–85 mol% (from SAXS) to 85–95 mol% (for the prepeak in X-ray diffraction) in the [DEME][BF4]–H2O system. Inside [DEME][BF4], the dynamic and static properties of hydrogen bonding of water changed drastically at x c.  相似文献   

9.
The inhibition effect of curcumin on the corrosion of mild steel in 1.0 M HCl solution was studied by weight loss, potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) methods. The experimental results suggest that this compound is an efficient corrosion inhibitor and the inhibition efficiency increases with the increase in inhibitor concentration. Adsorption of this compound on mild steel surface obeys Langmuir isotherm. Also the objective of this work is to attempt to find relationships between electronic structure and inhibition efficiency. The structural parameters, such as the frontier molecular orbital energies (E HOMO and E LUMO), gap of energy ΔE, from the molecule to iron as well as electronic parameters such as Mulliken atomic populations were calculated and discussed using the Density Functional Theory method (DFT).  相似文献   

10.
Silica/poly(styrene-N,N′-dimethylaminoethyl methacrylate) (SiO2/P(St-DMAEMA)) cationic pH-responsive core-shell particles with a narrow size distribution and diameter of less than 200 nm were synthesized by emulsion polymerization. The effects of the St/DMAEMA molar ratio, SiO2 core size, monomer amount, and cross-linking degree on the morphology and pH-responsiveness of the core-shell particles were investigated by transmission electron microscopy, dynamic light scattering, and conductometric titration. The results showed that core-shell particles with only one SiO2 core could be obtained when the cross-linker divinyl benzene (DVB) was used, and the diameter of the core-shell particles increased with the size of the SiO2 core and the total amount of monomer. It was observed that the amount of surface amino groups, zeta potential, and volume swelling ratio of the core-shell particles were significantly affected by the St/DMAEMA molar ratio, and a high volume swelling ratio was achieved at pH 4 and a DVB content of 3 mol%. The zeta potential was observed to be a function of pH, and the particles were positively charged when the pH value was below approximately 7.2.  相似文献   

11.
The thermal conductivity of Isotactic polypropylene (iPP)/silica particle (SiO2, 26 nm) nanocomposite has been investigated. The untreated SiO2 and iPP grafted onto SiO2 were dispersed in the iPP (M w = 2.5 × 105) matrix. The molecular mass of the iPP-grafted chain, M n, was precisely controlled to be 5.8 × 103, 1.2 × 104, and 4.6 × 104. It was found that the thermal conductivities of graft-treated nanocomposites were higher than that of untreated SiO2 composites. This implied that it is possible to achieve even higher thermal conductivity using the graft treatment. A thermal conductivity analysis conducted using a three-phase model, with considerations for thermal conductivity at interfacial layers, showed that the thermal conductivity of the interfacial layer increased significantly when a graft chain was incorporated. Moreover, the thermal conductivity per graft chain was proportional to the 1/2 power of the molecular mass ( \( M_{\text{n}}^{0.5} \) ). The results strongly suggest that the thermal conductivity pathway of interfacial layer was the main chain direction of iPP-grafted molecular chains.  相似文献   

12.
Ribose-5-phosphate isomerase B (RpiB), a crucial enzyme of pentose phosphate pathway, was proposed to be a potential drug target for visceral leishmaniasis. In this study, we have analyzed the biophysical properties of Leishmania donovani RpiB (LdRpiB) enzyme to gain insight into its unfolding pathway under various chemical and thermal denaturation conditions by using fluorescence and CD spectroscopy. LdRpiB inactivation precedes the structural transition at lower concentrations of both urea and guanidine hydrochloride (GdHCl). 8-Anilinonapthalene 1-sulfonic (ANS) binding experiments revealed the presence of molten globule intermediate at 1.5 M GdHCl and a nonnative intermediate state at 6-M urea concentration. Acrylamide quenching experiments further validated the above findings, as solvent accessibility of tryptophan residues increased with increase in GdHCl and urea concentration. The recombinant LdRpiB was completely unfolded at 6 M GdHCl, whereas the enzyme molecule was resistant to complete unfolding even at 8-M urea concentration. The GdHCl- and urea-mediated unfolding involves a three-state transition process. Thermal-induced denaturation revealed complete loss of enzyme activity at 65 °C with only 20 % secondary structure loss. The formation of the well-ordered β-sheet structures of amyloid fibrils was observed after 55 °C which increased linearly till 85 °C as detected by thioflavin T dye. This study depicts the stability of the enzyme in the presence of chemical and thermal denaturants and stability-activity relationship of the enzyme. The presence of the intermediate states may have major implications in the way the enzyme binds to its natural ligand under various conditions. Also, the present study provides insights into the properties of intermediate entities of this important enzyme.  相似文献   

13.
The interaction between vitamin B2 (VB2), a type of necessary nutrient for the body’s metabolism and repair, and trypsin, a serine protease found in the digestive system, has been investigated in vitro under a simulated physiological condition by UV–Vis spectrophotometry and fluorescence spectrometry. The intrinsic fluorescence intensity of trypsin was strongly quenched by VB2. Spectrophotometric observations are rationalized in terms of a static quenching process at lower concentrations of VB2 and a combined quenching (both dynamic and static) process at higher concentrations of VB2. The binding parameters, such as the binding constants and the number of binding sites, can be evaluated by fluorescence quenching experiments. The apparent binding constants K between VB2 and trypsin at different temperatures were 1.406, 1.264, and 0.543 × 106 L mol?1 and the numbers of binding sites n were 1.386, 1.391, and 1.319, which were all evaluated by the fluoresence quenching experiments. The negative values of ΔG for the formation of the trypsin–VB2 complex implied that the binding was a spontaneous process. According to the van’t Hoff equation, the standard enthalpy change (ΔH) and standard entropy change (ΔS) for the reaction were calculated to be ?49.817 kJ mol?1 and ?56.219 J mol?1 K?1, respectively, indicating that the hydrophobic interaction played a significant role in VB2 binding to trypsin. In addition, the binding distance between VB2 (acceptor) and trypsin (donor) was estimated to be 1.11 nm according to Förster’s resonance energy transfer theory. The results obtained here will be of biological significance in pharmacology and clinical medicine.  相似文献   

14.
Quantitation of cytochrome c (Cyt c) in cell lysates through surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using gold nanoparticles (Au NPs) as the matrix and GR-10 peptide as an internal standard has been demonstrated. To shorten digestion time, temperature sensitive microgels containing trypsin (TR) and Au NPs have been employed. As-prepared functional microgels (TR/Au NPs/MGs) allow digestion of Cyt c within 15 s under microwave irradiation. The internal standard SALDI-MS approach provides linearity (R2 = 0.98) of MS signal ratio (I 1168.6/I 1067.6) of the tryptic digested peptide (m/z 1168.6) to GR-10 peptide (m/z 1067.6) against the concentration of Cyt c ranging from 25 to 200 nM, with a limit of detection (at a signal-to-noise ratio of 3) of 10 nM. This approach has been validated by the analysis of the lysates of HeLa cells, with an average concentration of 13.7?±?3.5 μM for cytoplasmic Cyt c. Increased concentrations of Cyt c in the HeLa cells treated with etoposide (a commercial drug) or carbon dots (potential drug) have been revealed through this simple, sensitive, and rapid SALDI-MS approach, supporting the drugs induced Cyt c-mediated apoptosis of the cells. This study has shown that this internal standard SALDI-MS approach holds great potential for cell study. Graphical Abstract
?  相似文献   

15.
Collagen/cellulose blended solutions with collagen/cellulose mass ratio (Col/Cel) of 0, 1/40, 1/20, 1/10 and 1/5 were prepared using [Emim]Ac as solvent. The interactions between the two polymers before and after regeneration were investigated. In steady shear flow, all of the experimental viscosity values were greater than those of the estimated values calculated from the log-additivity rule for each sample, suggesting interactions between the two polymers in solutions. All solutions exhibited shear thinning behavior and the flow curves could be described by Cross model. Zero shear viscosity (η 0) versus Col/Cel was examined and a linear increase (from 8.73 to 16.39 Pa·s) can be observed for η 0 as Col/Cel ≤ 1/10, while there was only a slight increase (from 16.39 to 18.42 Pa·s) in η 0 as Col/Cel increased to 1/5. Dynamic rheology results suggested the existence of aggregates in solution with Col/Cel = 1/10. Furthermore, the activation energy of solution was 84.5 kJ mol?1 as Col/Cel = 1/10, higher than that of cellulose solution (44.2 kJ mol?1). Regenerated films were prepared and characterized to trace back the interactions between the two polymers in [Emim]Ac. Fourier transform infrared spectroscopy indicated the hydrogen-bond interaction between collagen and cellulose in films. The denaturation temperature of collagen in films with Col/Cel ≤ 1/10 could be improved, but it was decreased with the increase of collagen content, and finally was reduced to be close to that of collagen as Col/Cel = 1/5. The features of dynamic mechanical analysis for films were indicative of the lack of homogeneity between collagen and cellulose as Col/Cel = 1/5. Atomic force microscopy images further confirmed the phase-separation when Col/Cel = 1/5.  相似文献   

16.
An electrochemical sensor was developed and tested for detection of L-tyrosine in the presence of epinephrine by surface modification of a glassy carbon electrode (GCE) with Nafion and cerium dioxide nanoparticles. Fabrication parameters of a surfactant-assisted precipitation method were optimized to produce 2–3 nm CeO2 nanoparticles with very high surface-to-volume ratio. The resulting nanocrystals were characterized structurally and morphologically by X-ray diffractometery (XRD), scanning and high resolution transmission electron microscopy (SEM and HR-TEM). The nanopowder is sonochemically dispersed in a Nafion solution which is then used to modify the surface of a GCE electrode. The electrochemical activity of L-tyrosine and epinephrine was investigated using both a Nafion-CeO2 coated and a bare GCE. The modified electrode exhibits a significant electrochemical oxidation effect of L-tyrosine in a 0.2 M Britton-Robinson (B-R) buffer solution of pH 2. The electro-oxidation peak current increases linearly with the L-tyrosine concentration in the molar concentration range of 2 to 160 μM. By employing differential pulse voltammetry (DPV) for simultaneous measurements, we detected two reproducible peaks for L-tyrosine and epinephrine in the same solution with a peak separation of about 443 mV. The detection limit of the sensor (signal to noise ratio of 3) for L-tyrosine is ~90 nM and the sensitivity is 0.20 μA μM?1, while for epinephrine these values are ~60 nM and 0.19 μA μM?1. The sensor exhibited excellent selectivity, sensitivity, reproducibility and stability as well as a very good recovery time in real human blood serum samples.
Simultaneous electrochemical determination of L-tyrosine and epinephrine in blood plasma with Nafion-CeO2/GCE modified electrode showing a 443 mV peak-to-peak potential difference between species oxidation peak currents.  相似文献   

17.
Poly(p-chloromethyl styrene)-graft-poly(methyl methacrylate) (PCMS-g-PMMA) and poly(p-chloromethyl styrene)-graft-poly(benzyl methacrylate) (PCMS-g-PBzMA) graft copolymers with asymmetric branches are synthesized via the combination of cationic polymerization and atom transfer radical polymerization (ATRP). The process involves first, the preparation of poly(p-chloromethyl styrene) (PCMS-CH2Cl) macroinitiator without any cross-linking or side reactions through pendant benzyl chloride (?CH2Cl) functionality by cationic polymerization using a simple FeCl3-based initiating system at 25 °C. The as-synthesized PCMS-CH2Cl, without any transformation, is then used as the macroinitiator to graft PMMA and PBzMA branches by ATRP to produce PCMS-g-PMMA and PCMS-g-PBzMA graft copolymers of varying compositions with controlled molecular weight and moderately narrow polydispersities (M w/M n?≤?1.32). The resulting PCMS21 -g-PMMA232 graft copolymer in thin film form phase separates into spherical morphology with an average diameter of 170?±?72 nm. Whereas the PCMS21 -g-PBzMA156 graft copolymer gives worm-like nanostructures with an average length of 94 nm and width of 31 nm due to phase separation as visualized through atomic force microscopy. On the other hand, the phase-separated morphology is not very well-defined for other graft copolymers (PCMS113 -g-PMMA227 and PCMS113 -g-PBzMA154) thin films containing longer PCMS chains. This approach represents a rapid and convenient route to prepare unique spherical/worm-like polymer nanostructures. Figure
Well-defined poly(p-chloromethyl styrene)-graft-poly(methyl methacrylate) (PCMS-g-PMMA) and poly(p-chloromethyl styrene)-graft-poly(benzyl methacrylate) (PCMS-g-PBzMA) graft copolymers with asymmetric branches are synthesized by the combination of living cationic polymerization and atom transfer radical polymerization (ATRP). The resulting PCMS21 -g-PMMA232 and PCMS21 -g-PBzMA156 graft copolymers phase separate into nanostructured spherical and worm-like morphologies, respectively, in thin film form. The phase-separated morphology is not very well-defined for graft copolymers (PCMS113 -g-PMMA227 and PCMS113 -g-PBzMA154) thin films containing longer PCMS chains.  相似文献   

18.
Kinetics of two successive thermal decomposition reaction steps of cationic ion exchange resins and oxidation of the first thermal decomposition residue were investigated using a non-isothermal thermogravimetric analysis. Reaction mechanisms and kinetic parameters for three different reaction steps, which were identified from a FTIR gas analysis, were established from an analysis of TG analysis data using an isoconversional method and a master-plot method. Primary thermal dissociation of SO3H+ from divinylbenzene copolymer was well described by an Avrami–Erofeev type reaction (n = 2, g(α) = [?ln(1 ? α)]1/2]), and its activation energy was determined to be 46.8 ± 2.8 kJ mol?1. Thermal decomposition of remaining polymeric materials at temperatures above 400 °C was described by one-dimensional diffusion (g(α) = α 2), and its activation energy was determined to be 49.1 ± 3.1 kJ mol?1. The oxidation of remaining polymeric materials after thermal dissociation of SO3H+ was described by a phase boundary reaction (contracting volume, g(α) = 1?(1 ? α)1/3). The activation energy and the order of oxygen power dependency were determined to be 101.3 ± 13.4 and 1.05 ± 0.17 kJ mol?1, respectively.  相似文献   

19.
The non-isothermal method for estimating the kinetic parameters of crystallization for the phase change memory (PCM) materials was discussed. This method was applied to the perspective PCM material of Ge2Sb2Te5 with different Bi contents (0, 0.5, 1, 3 mass%) for defining the kinetic triplet. Rutherford backscattering spectroscopy and X-ray diffraction were used to carry out elemental and phase analysis of the deposited films. Differential scanning calorimetry at eight different heating rates was used to investigate kinetics of thermally induced transformations in materials. Dependences of activation energies of crystallization (E a) on the degree of conversion were estimated by model-free Ozawa–Flynn–Wall, Kissinger–Akahira–Sunose, Tang and Starink methods. The obtained values of E a were quite close for all of these methods. The reaction models of the phase transitions were derived with using of the model-fitting Coats–Redfern method. In order to find pre-exponential factor A at progressive conversion values, we used values of E a already estimated by the model-free isoconversional method. It was established that the crystallization processes in thin films investigated are most likely describes by the second and third-order reactions models. Obtained kinetic triplet allowed predicting transition and storage times of the PCM cells. It was found that thin films of Ge2Sb2Te5 + 0.5 mass% Bi composition can provide the switching time of the phase change memory cell less than 1 ns. At the same time, at room temperature this material has a maximum storage time among the studied compositions.  相似文献   

20.
In order to improve the antimicrobial activity of bacterial cellulose (BC), the silver nanoparticles (Ag NPs) were in situ fabricated on the BC membranes, affording BC and Ag hybrid antimicrobial materials, BC + Ag, which possesses excellent antimicrobial performance. Typically, carboxyl groups were firstly introduced into BC by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation. Then, the carboxyl-functionalized BC was performed with ion-exchange reaction to change the sodium ions into Ag+ by immersing in AgNO3 aqueous solution, generating Ag+ anchored BC. Finally, two types of distinct reductive reagents including NaBH4 and sodium citrate were employed to transform Ag+ into Ag NPs to fabricate BC + Ag. The diameters of Ag NPs were determined to be 3.8 nm for NaBH4-reduced BC + Ag, and 22.0 nm for sodium citrate-reduced one, respectively. The silver content of BC + Ag were determined to be 1.944 and 2.895 wt% for NaBH4-reduced sample and sodium citrate-reduced one, respectively. Two types of BC + Ag both showed a slow and persistent Ag+ release profile, but the NaBH4-reduced one released much more Ag+ than that of sodium citrate under the same measurement condition. In-depth antibacterial analysis via the disc diffusion and colony forming count method disclosed that BC + Ag exhibited strong bactericidal effects against both Escherichia coli and Staphylococcus aureus. And the antibacterial activity of NaBH4-reduced BC + Ag was higher than the sodium citrate-reduced one. Overall, this study would further improve the antibacterial efficiency of BC + Ag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号