首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microbial pretreatment of corn stover and corn stover silage was achieved via the solid-state cultivation of Phanerochaete chrysosporium; pretreatment effects on the biodegradability and subsequent anaerobic production of biogas were investigated. The peak levels of daily biogas production and CH4 yield from corn stover silage were approximately twice that of corn stover. Results suggested that ensiling was a potential pretreatment method to stimulate biogas production from corn stover. Surface morphology and Fourier-transform infrared spectroscopy analyses demonstrated that the microbial pretreatment of corn stover silage improved biogas production by 10.5 to 19.7 % and CH4 yield by 11.7 to 21.2 % because pretreatment could decrease dry mass loss (14.2 %) and increase substrate biodegradability (19.9 % cellulose, 32.4 % hemicellulose, and 22.6 % lignin). By contrast, the higher dry mass loss in corn stover (55.3 %) after microbial pretreatment was accompanied by 54.7 % cellulose, 64.0 % hemicellulose, and 61.1 % lignin degradation but did not significantly influence biogas production.  相似文献   

2.
秸秆生产乙醇预处理关键技术   总被引:1,自引:0,他引:1  
乙醇是一种很有希望替代有限石油的燃料。目前燃料乙醇已在我国部分省市得到应用。我国目前燃料乙醇生产的主要原料是陈化粮,但我国陈化粮可用于燃料乙醇生产的量十分有限。真正可大量转化乙醇的应是纤维质材料。纤维质材料转化乙醇的挑战性问题是产量偏低、成本偏高。纤维质材料的预处理是转化乙醇过程中的关键步骤,该步骤的优化可明显提高纤维素的水解率,进而降低乙醇的生产成本。本文总结了纤维质材料预处理的各种方法,对各种方法的优缺点进行了综述和分析,并对生物质预处理技术发展的前景进行了展望。  相似文献   

3.
秸秆生产乙醇预处理关键技术   总被引:1,自引:0,他引:1  
孙君社  苏东海  刘莉 《化学进展》2007,19(7):1122-1128
乙醇是一种很有希望替代有限石油的燃料.目前燃料乙醇已在我国部分省市得到应用.我国目前燃料乙醇生产的主要原料是陈化粮,但我国陈化粮可用于燃料乙醇生产的量十分有限.真正可大量转化乙醇的应是纤维质材料.纤维质材料转化乙醇的挑战性问题是产量偏低、成本偏高.纤维质材料的预处理是转化乙醇过程中的关键步骤,该步骤的优化可明显提高纤维素的水解率,进而降低乙醇的生产成本.本文总结了纤维质材料预处理的各种方法,对各种方法的优缺点进行了综述和分析,并对生物质预处理技术发展的前景进行了展望.  相似文献   

4.
The production of ethanol and methane from corn stover (CS) was investigated in a biorefinery process. Initially, a novel soaking pretreatment (NaOH and aqueous-ammonia) for CS was developed to remove lignin, swell the biomass, and improve enzymatic digestibility. Based on the sugar yield during enzymatic hydrolysis, the optimal pretreatment conditions were 1?% NaOH?+?8?% NH4OH, 50°C, 48?h, with a solid-to-liquid ratio 1:10. The results demonstrated that soaking pretreatment removed 63.6?% lignin while reserving most of the carbohydrates. After enzymatic hydrolysis, the yields of glucose and xylose were 78.5?% and 69.3?%, respectively. The simultaneous saccharification and fermentation of pretreated CS using Pichia stipitis resulted in an ethanol concentration of 36.1?g/L, corresponding only to 63.3?% of the theoretical maximum. In order to simplify the process and reduce the capital cost, the liquid fraction of the pretreatment was used to re-soak new CS. For methane production, the re-soaked CS and the residues of SSF were anaerobically digested for 120?days. Fifteen grams CS were converted to 1.9?g of ethanol and 1337.3?mL of methane in the entire process.  相似文献   

5.
Funneling and functionalization of a mixture of lignin‐derived monomers into a single high‐value chemical is fascinating. Reported herein is a three‐step strategy for the production of terephthalic acid (TPA) from lignin‐derived monomer mixtures, in which redundant, non‐uniform substitutes such as methoxy groups are removed and the desired carboxy groups are introduced. This strategy begins with the hydro‐treatment of corn‐stover‐derived lignin oil over a supported molybdenum catalyst to selectively remove methoxy groups. The generated 4‐alkylphenols are converted into 4‐alkylbenzoic acids by carbonylation with carbon monoxide. The Co‐Mn‐Br catalyst then oxidizes various alkyl chains into carboxy groups, transforming the 4‐alkylbenzoic acid mixture into a single product: TPA. For this route, the overall yields of TPA based on lignin content of corn stover could reach 15.5 wt %, and importantly, TPA with greater than 99 % purity was obtained simply by first decanting the reaction mixture and then washing the solid product with water.  相似文献   

6.
Photocatalyst-assisted ammonia pretreatment was explored to improve lignin removal of the lignocellulosic biomass for effective sugar conversion. Corn stover was treated with 5.0–12.5 wt.% ammonium hydroxide, two different photocatalysts (TiO2 and ZnO) in the presence of molecular oxygen in a batch reactor at 60 °C. Various solid-to-liquid ratios (1:20–1:50) were also tested. Ammonia pretreatment assisted by TiO2-catalyzed photo-degradation removed 70 % of Klason lignin under the optimum condition (12.5 % ammonium hydroxide, 60 °C, 24 h, solid/liquid?=?1:20, photocatalyst/biomass?=?1:10 with oxygen atmosphere). The enzymatic digestibilities of pretreated corn stover were 85 % for glucan and 75 % for xylan with NH3-TiO2-treated solid and 82 % for glucan and 77 % for xylan with NH3-ZnO-treated solid with 15 filter paper units/g-glucan of cellulase and 30 cellobiase units/g-glucan of β-glucosidase, a 2–13 % improvement over ammonia pretreatment alone.  相似文献   

7.
Pretreatment of biomass before subjecting it to enzyme saccharification is crucial with regards to facilitating access of enzyme to biomass. Extrusion, as a continuous and cost-effective pretreatment method, combines heating with high shear and mixing opening cell walls at the microscopic scale, thus largely increasing the specific surface area (SSA) of biomass for enzyme adsorption. The objective of this study was to examine the effect of extrusion as a pretreatment method and the underlying factors ruling the improvement of sugar yields. The optimum glucose, xylose, and combined sugar recoveries were 48.79%, 24.98%, and 40.07%, respectively, at 27.5% moisture content and 80 rpm screw speed. These yields were 2.2, 6.6, and 2.6 times higher than those for untreated corn stover. X-ray diffraction analysis showed that the crystallinity index was not a good indicator of sugar yield. However, scanning electron microscopy showed that the cellulose network was exposed due to the destruction of the lignin sheath. The Langmuir adsorption model was shown to be an effective tool for the estimation of the SSA of corn stover. The SSA of pretreated samples was significantly amplified over the control, revealing that extrusion can open the cell wall at the microscopic scale, which was especially favorable on sugar yields.  相似文献   

8.
Three pretreated corn stover (ammonia fiber expansion, dilute acid, and dilute alkali) were used as carbon source to culture Trichoderma reesei Rut C-30 for cellulase and xylanase production. The results indicated that the cultures on ammonia fiber expansion and alkali pretreated corn stover had better enzyme production than the acid pretreated ones. The consequent enzymatic hydrolysis was performed applying fungal enzymes on pretreated corn stover samples. Tukey’s statistical comparisons exhibited that there were significant differences on enzymatic hydrolysis among different combination of fungal enzymes and pretreated corn stover. The higher sugar yields were achieved by the enzymatic hydrolysis of dilute alkali pretreated corn stover.  相似文献   

9.
Microbial Lipid Production from Corn Stover via Mortierella isabellina   总被引:1,自引:0,他引:1  
Microbial lipid is a promising source of oil to produce biofuel if it can be generated from lignocellulosic materials. Mortierella isabellina is a filamentous fungal species featuring high content of oil in its cell biomass. In this work, M. isabellina was studied for lipid production from corn stover. The experimental results showed that M. isabellina could grow on different kinds of carbon sources including xylose and acetate, and the lipid content reached to 35 % at C/N ratio of 20. With dilution, M. isabellina could endure inhibition effects by dilute acid pretreatment of corn stover (0.3 g/L furfural, 1.2 g/L HMF, and 1 g/L 4-hydroxybenozic acid) and the strain formed pellets in the cell cultivations. An integrated process was developed combining the dilute acid pretreatment, cellulase hydrolysis, and cell cultivation for M. isabellina to convert corn stover to oil containing fungal biomass. With 7.5 % pretreated biomass solid loading ratio, the final lipid yield from sugar in pretreated biomass was 40 % and the final lipid concentration of the culture reached to 6.46 g/L.  相似文献   

10.

Corn stover silage (CSS) is regarded as a promising feedstock for bioethanol production. The two-step pretreatment using a sequential non-ionic surfactant and ferric nitrate pretreatment was investigated for improving the enzymatic hydrolysis of CSS. The first-step pretreatment using non-ionic surfactant (Tween-80, 2.0 wt.%) at 60 °C for 60 min achieved 30.48% the removal of lignin. Compared with the raw material, the cellulose content of first-step treated CSS increased by 15.86%. The second step using ferric nitrate resulted in 94.56% hemicellulose removal and achieved 72.53% cellulose purity at 130 °C for 30 min, while the yields of furfural and HMF were only 0.36 and 0.32 g/100 g dry material, respectively. The maximum enzymatic digestibility of the two-step treated CSS was 90.98% with a low cellulose dosage (15 FPU/g-glucan), which was approximately 32.07% higher than that of the first-step pretreatment only with Tween-80.

  相似文献   

11.
Pretreatment experiments were carried out to demonstrate high xylose yields at high solids loadings in two different batch pretreatment reactors under process-relevant conditions. Corn stover was pretreated with dilute sulfuric acid using a 4-l Steam Digester and a 4-l stirred ZipperClave® reactor. Solids were loaded at 45% dry matter (wt/wt) after sulfuric acid catalyst impregnation using nominal particle sizes of either 6 or 18 mm. Pretreatment was carried out at temperatures between 180 and 200 °C at residence times of either 90 or 105 s. Results demonstrate an ability to achieve high xylose yields (>80%) over a range of pretreatment conditions, with performance showing little dependence on particle size or pretreatment reactor type. The high xylose yields are attributed to effective catalyst impregnation and rapid rates of heat transfer during pretreatment.  相似文献   

12.
The effect of aqueous ammonia pretreatment on the hydrolysis of different corn stover fractions (rind, husk, leaf, and pith) by xylanase (XYL) with cellulases (CELs) was evaluated. The aqueous ammonia pretreatment had excellent delignification ability (above 66 %) for different corn stover fractions. The corn rind exhibited the lowest susceptibility to aqueous ammonia pretreatment. The pretreated rind showed the lowest hydrolyzability by CEL and XYL, which was supported by a high content of crystalline cellulose in the hydrolyzed residues of rind, as confirmed by X-ray diffraction (XRD). With the addition of 1 mg XYL/g dry matter, a high glucose yield (above 90 %) could be obtained from the pretreated rind by CEL. The results revealed that a high hydrolyzate yield of corn rind after aqueous ammonia pretreatment could be obtained with 1 mg xylanase/g dry matter, showing that aqueous ammonia pretreatment and xylanase addition to cellulases have great potential for the efficient hydrolysis of corn stover without previous fractionation.  相似文献   

13.
The negative impacts on the ecosystem of antibiotic residues in the environment have become a global concern. However, little is known about the transformation mechanism of antibiotics by manganese peroxidase (MnP) from microorganisms. This work investigated the transformation characteristics, the antibacterial activity of byproducts, and the degradation mechanism of tetracycline (TC) by purified MnP from Phanerochaete chrysosporium. The results show that nitrogen-limited and high level of Mn2+ medium could obtain favorable MnP activity and inhibit the expression of lignin peroxidase by Phanerochaete chrysosporium. The purified MnP could transform 80% tetracycline in 3 h, and the threshold of reaction activator (H2O2) was about 0.045 mmol L−1. After the 3rd cyclic run, the transformation rate was almost identical at the low initial concentration of TC (77.05–88.47%), while it decreased when the initial concentration was higher (49.36–60.00%). The antimicrobial potency of the TC transformation products by MnP decreased throughout reaction time. We identified seven possible degradation products and then proposed a potential TC transformation pathway, which included demethylation, oxidation of the dimethyl amino, decarbonylation, hydroxylation, and oxidative dehydrogenation. These findings provide a novel comprehension of the role of MnP on the fate of antibiotics in nature and may develop a potential technology for tetracycline removal.  相似文献   

14.
A new process for pretreatment of lignocellulosic biomass, designated the soaking in ethanol and aqueous ammonia (SEAA) process, was developed to improve hemicellulose preservation in solid form. In the SEAA process, an aqueous ammonia solution containing ethanol is used. Corn stover was treated with 15 wt.% ammonia at 1:9 solid–liquid ratio (by weight) at 60 °C for 24 h with ethanol added at 1, 5, 20, and 49 wt.% (balance was water). The extents by which xylan was solubilized with no ethanol and with ethanol added at 1, 5, 20, and 49 wt.% of the total liquid were 17.2%, 16.7%, 14.5%, 10.4%, and 6.3% of the original xylan, respectively. Thus, at the highest ethanol concentration used the loss of hemicellulose to the liquid phase was reduced by 63%. The digestibility of glucan and xylan in the pretreated corn stover samples by cellulase was not affected by ethanol addition of up to 20 wt.%. The enzymatic digestibility of the corn stover treated with 49 wt.% ethanol added was lower than the digestibility of the sample treated with no ethanol addition. Thus, based on these results, 20 wt.% was found to be the optimum ethanol concentration for use in the SEAA process for pretreatment of corn stover.  相似文献   

15.
Ethanol can be produced from lignocellulosic biomass with the usage of ball milling pretreatment followed by enzymatic hydrolysis and fermentation. The sugar yields from lignocellulosic feed stocks are critical parameters for ethanol production process. The research results from this paper indicated that the yields of glucose and xylose were improved by adding any of the following dilute chemical reagents: H2SO4, HCl, HNO3, CH3COOH, HCOOH, H3PO4, and NaOH, KOH, Ca(OH)2, NH3·H2O in the ball milling pretreatment of corn stover. The optimal enzymatic hydrolysis efficiencies were obtained under the conditions of ball milling in the alkali medium that was due to delignification. The data also demonstrated that ball milling pretreatment was a robust process. From the microscope image of ball milling-pretreated corn stover, it could be observed that the particle size of material was decreased and the fiber structure was more loosely organized. Meanwhile, the results indicate that the treatment effect of wet milling is better than that of dry milling. The optimum parameters for the milling process were ball speed of 350 r/min, solid/liquid ratio of 1:10, raw material particle size with 0.5 mm, and number of balls of 20 (steel ball, Φ = 10 mm), grinding for 30 min. In comparison with water milling process, alkaline milling treatment could increase the enzymatic hydrolysis efficiency of corn stover by 110%; and through the digestion process with the combination of xylanase and cellulase mixture, the hydrolysis efficiency could increase by 160%.  相似文献   

16.
17.
Applied Biochemistry and Biotechnology - Phanerochaete chrysosporium lignin peroxidase (LiP) can degrade synthetic dyes such as heterocyclic, azo, and triphenylmethane on its activation by H2O2....  相似文献   

18.
An integrated wet-milling and alkali pretreatment was applied to corn stover prior to enzymatic hydrolysis. The effects of NaOH concentration in the pretreatment on crystalline structure, chemical composition, and reducing-sugar yield of corn stover were investigated, and the mechanism of increasing reducing-sugar yield by the pretreatment was discussed. The experimental results showed that the crystalline structure of corn stover was disrupted, and lignin was removed, while cellulose and hemicellulose were retained in corn stover by the pretreatment with 1% NaOH in 1 h. The reducing-sugar yield from the pretreated corn stovers increased from 20.2% to 46.7% when the NaOH concentration increased from 0% to 1%. The 1% NaOH pretreated corn stover had a holocellulose conversion of 55.1%. The increase in reducing-sugar yield was related to the crystalline structure disruption and delignification of corn stover. It was clarified that the pretreatment significantly enhanced the conversion of cellulose and hemicellulose in the corn stover to sugars.  相似文献   

19.
This study deals with the utilization of chicken feather waste as a substrate for anaerobic digestion and improving biogas production by degradation of the compact structure of the feather keratin. In order to increase the digestibility of the feather, different pretreatments were investigated, including thermal pretreatment at 120 °C for 10 min, enzymatic hydrolysis with an alkaline endopeptidase [0.53–2.66 mL/g volatile solids (VS) feathers] for 0, 2, or 24 h at 55 °C, as well as a combination of these pretreatments. The effects of the treatments were then evaluated by anaerobic batch digestion assays at 55 °C. The enzymatic pretreatment increased the methane yield to 0.40 Nm3/kg VSadded, which is 122 % improvement compared to the yield of the untreated feathers. The other treatment conditions were less effective, increasing the methane yield by 11–50 %. The long-term effects of anaerobic digestion of feathers were examined by co-digestion of the feather with organic fraction of municipal solid waste performed with and without the addition of enzyme. When enzyme was added together with the feed, CH4 yield of 0.485 Nm3/kg VS?1 d?1 was achieved together with a stable reactor performance, while in the control reactor, a decrease in methane production, together with accumulation of undegraded feather, was observed.  相似文献   

20.
Corn stover silage is an attractive raw material for the production of biofuels and chemicals due to its high content of carbohydrates and easy degradability. The effects of Fe(NO3)3 pretreatment conditions on sugar yields were investigated for corn stover silage. In addition, a combined severity factor was used to evaluate the effect of pretreatment conditions on the concentration of total sugars and inhibitors. Optimum pretreatment condition was obtained at 150 °C for 10 min with 0.05 M Fe(NO3)3, at which the yields of soluble xylose and glucose in liquid achieved 91.80% of initial xylose, 96.74% of initial arabinose and 19.09% of initial glucose, respectively, meanwhile, 91.84% of initial xylose, 98.24% of initial arabinose, and 19.91% of initial glucose were removed. In addition, a severity analysis showed that the maximum sugar concentration of 33.48 g/l was achieved at combined severity parameter value of 0.62, while the inhibitor concentration was only 0.03 g/l. Fe(NO3)3 is an effective catalyst to enhance hemicellulose hydrolysis in corn stover silage, the yields of monomeric xylose in the liquid fraction reached as high as 91.06% of initial xylose and 96.22% of initial arabinose, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号