首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
A number of temperature and kinetic parameters of thermal degradation of polyimides over the temperature range from 20 to 1000° have been determined on the basis of thermogravimetric investigations of a polyimide sample obtained from pyromellitic dianhydride and diaminodiphenyl ether. It was shown that such kinetic parameters as the reaction order and the activation energy of thermal degradation are directly dependent on the conditions under which the thermal analysis is carried out. It was found that when the static and dynamic conditions of the environment of a polymer sample are varied, the thermochemical processes occurring in a polyimide over the temperature range investigated are drastically changed.A critical analysis of the possibility of comparing the kinetic data on thermal degradation with the criteria generally used for the evaluation of the thermal stability of polyimides was carried out. The dynamic kinetic characteristics of the degradation of polyimide were correlated to prolonged thermal stability.
Zusammenfassung Eine Anzahl von Temperatur- und kinetischen Parametern des thermischen Abbaus von Polyimiden wurde im Temperaturbereich von 20 bis 1000° aufgrund von an aus Pyromellitdianhydrid und Diaminodiphenyläther erhaltenen Polyimidproben durchgeführten Untersuchungen bestimmt. Es wurde gezeigt, daß kinetische Parameter wie die Reaktionsordnung und die Aktivierungsenergie der thermischen Zersetzung unmittelbar von den Bedingungen abhängig sind, unter welchen die Thermoanalyse durchgeführt wurde. Es wurde gefunden, daß im Falle der Änderung der statischen und dynamischen Bedingungen der Umgebung einer Polymerprobe, die in einem Polyimid in dem untersuchten Temperaturbereich stattfindenden thermochemischen Vorgänge drastisch geändert werden.Eine kritische Analyse der Möglichkeit des Vergleichs kinetischer Angaben bezüglich des thermischen Abbaus mit den zur Bewertung der Thermostabilität von Polyimiden allgemein gebräuchlichen Kriterien wurde durchgeführt. Die dynamischen kinetischen Charakteristika des Abbaus von Polyimiden wurden mit der verlängerten Thermostabilität korreliert.

, , 20–1000°. , , . , , . , . .
  相似文献   

3.
The kinetics of the thermal degradation and thermal oxidative degradation of poly(p-dioxanone) (PPDO) were investigated by thermogravimetric analysis. Kissinger method, Friedman method, Flynn-Wall-Ozawa method and Coats-Redfern method have been used to determine the activation energies of PPDO degradation. The results showed that the thermal stability of PPDO in pure nitrogen is higher than that in air atmosphere. The analyses of the solid-state processes mechanism of PPDO by Coats-Redfern method and Criado et al. method showed: the thermal degradation process of PPDO goes to a mechanism involving random nucleation with one nucleus on the individual particle (F1 mechanism); otherwise, the thermal oxidative degradation process of PPDO is corresponding to a nucleation and growth mechanism (A2 mechanism).  相似文献   

4.
A series of pulps containing between 3.6 and 23% of lignin was prepared by a careful delignification of a high-yield bisulfite pulp. The pulps were subjected to isothermal pyrolysis in a Perkin-Elmer TGS-1 thermobalance. The measurements were carried out at 8 different temperatures from 325 to 360°C under nitrogen atmosphere. The results obtained indicate that the effect of lignin on degradation depends strongly on temperature. Below 330°C, the rate of degradation varied only little with lignin. This variation becomes more important at temperatures above 330°C in that the rate of degradation increases with decreasing lignin content. The apparent activation energy of degradation ranges from 41.4 kcal mol?1 at 23% of lignin to 67.0 kcal mol?1 at 3.7% of lignin.  相似文献   

5.
The thermal degradation/modification dynamics of poly(-caprolactone) (PCL) was investigated in a thermogravimetric analyzer under non-isothermal and isothermal conditions. The time evolution of the molecular weight distribution during degradation was studied using gel permeation chromatography. Experimental molecular weight evolution and weight loss profile were modeled using continuous distribution kinetics. The degradation exhibited distinctly different behavior under non-isothermal and isothermal heating. Under non-isothermal heating, the mass of the polymer remained constant at initial stages with rapid degradation at longer times. The Friedman and Chang methods of analysis showed a 3-fold change (from 18 to 55–62 kcal mol−1) in the activation energy from low temperatures to high temperatures during degradation. This suggested the governing mechanism changes during degradation and was explained using two parallel mechanisms (random chain scission and specific chain end scission) without invoking the sequential reaction mechanisms. Under isothermal heating, the polymer degraded by pure unzipping of specific products from the chain end.  相似文献   

6.
Extensively studied thermal degradation of polyvinyl chloride (PVC) occurs with formation of free hydrogen chloride and conjugated double bonds absorbing light in visible region. Thermogravimetric monitoring of PVC blends degradation kinetics by the loss of HCl is often complicated by evaporation and degradation of plasticizers and additives. Spectroscopic PVC degradation kinetics monitoring by absorbance of forming conjugated polyenes is specific and should not be affected by plasticizers loss. The kinetics of isothermal degradation monitored by thermal gravimetric analysis in real time was compared with batch data obtained by UV/Visible absorption spectroscopy. Effects of plasticizer on kinetics of polyene formation were examined. Thermal degradation of PVC films plasticized with di-(2-ethylhexyl) phthalate (DEHP) and 1,2,4-benzenedicarboxylic acid, tri-(3-ethylhexyl) ester (TOTM) was monitored by conjugated double bonds light absorption at 350 nm at 160, 180, and 200 °C. Plasticizer-free PVC powder degradation kinetics and that of plasticized films were also obtained thermogravimetrically at temperatures ranging from 160 to 220 °C. Plasticizer-free PVC powder degradation and spectroscopically monitored degradation of plasticized PVC films occurred with the same apparent activation energy of ≈150 kJ mol−1. No difference in degradation kinetics of films plasticized with DEHP and TOTM was detected.  相似文献   

7.
阻燃共聚酯/粘土复合物热降解动力学研究   总被引:2,自引:0,他引:2  
用插层共聚方法合成了含磷共聚酯/粘土复合物。用热重(TG)方法考察热降解动力学。通过在空气中以不同的升温速率升温至设定温度,用Kissinger法和Hymn-Wall-Ozawa法对数据进行处理。结果表明,粘土组分含量较高的反应活化能较大,热稳定性较好。  相似文献   

8.
The kinetics and parameters of thermal and acidic degradation of poly-1,3-dioxolane were investigated in order to elucidate the mechanism of degradation and to obtain information on the nature of active centers. Both homolytic and heterolytic breaking of a macromolecule were shown to be random and occur at the acetal bond. Thermal degradation was found to proceed in two stages, depending on temperature and involving active centers of a different nature, i.e., macroions and macroradicals. The rate-determining step of thermal degradation appears to be one involving the radical component, similarly to thermal degradation of olefin polyoxides. Acidic degradation occurs solely by the depolymerization mechanism, as in the case of polyaldehydes. It was concluded that the degradation mechanism depends not only on the chain structure and the thermodynamic properties of the system, but also on the nature of active centers.  相似文献   

9.
The present study investigates the effect of different sample preparation methods on the pyrolysis behaviour of metal-added biomass; Willow samples were compared in the presence of two salts of zinc and lead containing sulphate and nitrate anions which were added to the wood samples with three different techniques as dry-mixing, impregnation and ion-exchange. The effect of acid and water wash as common demineralisation pre-treatments were also analysed to evaluate their roles in the thermal degradation of the biomass. Results from thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR) and pyrolysis-mass spectrometry (Py-MS) measurements indicated that these pre-treatments change the matrix and the physical–chemical properties of wood. Results suggested that these structural changes increase the thermal stability of cellulose during pyrolysis. Sample preparation was also found to be a crucial factor during pyrolysis; different anions of metal salts changed the weight loss rate curves of wood material, which indicates changes in the primary degradation process of the biomass. Results also showed that dry-mixing, impregnation or ion-exchange influence the thermal behaviour of wood in different ways when a chosen metal salt was and added to the wood material.  相似文献   

10.
The thermal oxidative degradation kinetics of pure acrylonitrile–butadiene–styrene (ABS) and the flame-retarded ABS materials with intumescent flame retardant (IFR) were investigated using Kissinger, Flynn–Wall–Ozawa, and Horowitz–Metzger methods. The results showed that the degradation of all samples included two stages, the activation energy at the first stage decreased by the incorporation of these flame retardant components, while increased at the second stage. The activation energy order of the flame-retarded ABS samples at stage 2 illustrates the relationship between the composition of IFRs and their flame retardancy, FR materials with appropriate acid agent/char former ratio has higher activation energy and better flame retardancy.  相似文献   

11.
The thermal decomposition behavior of some phosphorus-containing polyesters and a polyesterimide was studied using thermogravimetric analysis in air at several heating rates between 5 °C/min and 20 °C/min. The results of this study, realized for polymers with phosphorus linkage as pendant group, were compared with the behavior of some polymers having the same backbone structure, with phosphorus in the main chain, respectively, without phosphorus. The kinetic processing of data was carried out using the Coats-Redfern, Reich-Levi, Flynn-Wall-Ozawa and Kissinger methods.  相似文献   

12.
13.
Amylose content, crystallinity, morphology and the kinetic of thermal degradation to starches from different botanical origins are described based on XRD, SEM, DSC and TG/DTG curves. Applying the non-isothermal isoconversional Wall-Flynn-Ozawa method on the TG/DTG curves average activation energy (0.10 ≤ α ≤ 0.70) E = 144.1 ± 9.8, 171.6 ± 14.6, 158.3 ± 7.4 and 159.4 ± 15 kJ mol−1 could be obtained for thermal degradation of corn, rice, potato and cassava starches, respectively. From E values and the generalized time θ, the Sesták-Berggren (SB) in which f(α) = αm(1 − α)n seems to be most suitable kinetic model in describing physicogeometrically the thermal degradation for the samples regardless of its botanical origins. The determination of the kinetic exponents m and n allows to obtain the pre-exponential factor (0.2 ≤ α ≤ 0.8) ln A = 8.8, 10.4, 9.2 and 8.9 min−1 for corn, rice, potato and cassava starches, respectively. There were not significant differences between values of the kinetic triplet of the starches, indicating that, despite structural differences, these had little influence on the thermal degradation process of the starches.  相似文献   

14.
In this study, wood samples were exposed to light irradiations (direct sunlight, xenon lamp, mercury vapour lamp) and thermal treatments were carried out in dry- and in humid conditions at 90°C. One part of the samples was covered by an aluminium plate during light irradiation. The samples under the aluminium plate also suffered considerable chemical changes, monitored by infrared technique and colour measurement. The sunlight produced greater colour change under the aluminium plate than the artificial light sources. During light irradiation, the carbonyl band having two maximum at 1700 and 1,746 cm(-1) increased and the peak of the aromatic skeletal vibration arising from lignin (1,510 cm(-1)) decreased together with the guaiacyl vibrations at 1,275 cm(-1). There was absorption decrease at 1,174 cm(-1) because of the ether band splitting. Under the covered surface only the ether band at 1,174 cm(-1) decreased and one carbonyl band increased with a maximum at 1,715 cm(-1). Degradation of lignin was negligible for the covered surface. Colour change generated by thermal degradation was much greater in humid condition than in dry condition.  相似文献   

15.
Differential scanning calorimetry (DSC) and thermogravimetric analysis (TG) were performed on wood samples of different essences (fir, chestnut, poplar, linden and oak) before consolidation. A kinetic analysis was applied on the two-steps decomposition processes occurring in all wood samples using either the multiheating rates Kissinger equation and the isoconversional Ozawa-Flynn-Wall method that enables the variation of activation energy to be determined as a function of the degree of reaction. Taking into account both decomposition temperature and activation energy for the first degradation step oak seems to be the less stable sample. The comparison of DSC curves performed in air with those in oxygen enables to consider the role of the partial pressure of oxygen in the mechanisms of both decompositions.  相似文献   

16.
The kinetics of thermal oxidative degradation of a polyester resin and of its formulation with diethyldibenzylammonium bromide was studied. The rate constants of the thermal decomposition were determined.  相似文献   

17.
The thermal stability and degradation behavior of polypropylene (PP) particles having diameter varying from few micrometers to nanometers were studied by thermogravimetric analysis (TGA). The PP particles of average diameter ∼20 μm, ∼10 μm, ∼5 μm, ∼1 μm and <500 nm were studied over a range of temperature from 25 to 600 °C in N2 atmosphere and heating rates of 5, 10 and 15 °C/min. Thermal stability of PP particles initially decreases and then increases as particle size further decreases to nanometer scale. The five single heating rate techniques such as Friedman, Freeman-Carroll, Chang, Coats-Redfern and second Kissinger; and three multiple heating rate techniques such as the first Kissinger, Kim-Park and Flynn-Wall were used to compute the kinetic parameters of degradation reaction, e.g., activation energy (Ea), order of reaction (n) and frequency factor [ln(Z)]. The lifetime of macro-, micro- and nanosized PP particles was also estimated by a method proposed by Toop. It was found that the activation energy and lifetime of nanosized PP particles are moderately high compared to the microsized PP particles. Moreover, the decomposition temperature, order of reaction (n), frequency factor [ln(Z)] not only depend on the heating rate and calculation technique but also on the particle size of polymer. The results are compared with macrosized PP.  相似文献   

18.
New special engineering thermoplastics, poly(phthalazinone ether sulfone) (PPES) and poly(phthalazinone ether sulfone ketone) (PPESK), containing phthalazinone are synthesized through step-polymerization. The kinetics of thermal degradation of PPES and PPESK (1/1) in nitrogen is investigated at several heating rates by thermogravimetry (TG). It is concluded that, based on using Satava’s theory, the thermal degradation mechanism of PPESK (1/1) is nucleation and growth, the order of reaction of the degradation process is one (n = 1). In contrast, the thermal degradation mechanism of PPES is a phase boundary controlled reaction and the order of the reaction is two (n = 2). The kinetic parameters, including reaction energy and frequency factor of thermal degradation reaction for PPES and PPESK (1/1) are analyzed using isoconversional Friedman, Kissinger–Akahira–Sunose (K–A–S) and Ozawa method. In addition, the study focus on the influence of heating rate and ratio of ketone/sulfone on thermal stability and the life estimation are described.  相似文献   

19.
The kinetics of thermal oxidative degradation of a compound based on a polyester resin and dimethylethylphenylammonium iodide was studied. The rate constants of thermal decomposition were determined. The degradation of the compound was studied by dynamic thermogravimetric analysis.  相似文献   

20.
The lignin preparations isolated from pine and beech wood were subjected to a thermogravimetric analysis (TG). The lignin preparations were also used to obtain samples of different degrees of thermal degradation characterised by mass-losses in the interval from 10 to 60% of their initial mass. These samples were subjected to elementary analysis and the content of methoxy groups. It was observed that the content of these functional groups declined in products in which the degree of thermal degradation exceeded 30%, which corresponds to temperatures over 450°C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号