首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let G be a connected graph. For ${x,y\in V(G)}$ with d(x, y) = 2, we define ${J(x,y)= \{u \in N(x)\cap N(y)\mid N[u] \subseteq N[x] \,{\cup}\,N[y] \}}$ and ${J'(x,y)= \{u \in N(x) \cap N(y)\,{\mid}\,{\rm if}\ v \in N(u){\setminus}(N[x] \,{\cup}\, N[y])\ {\rm then}\ N[x] \,{\cup}\, N[y]\,{\cup}\,N[u]{\setminus}\{x,y\}\subseteq N[v]\}}$ . A graph G is quasi-claw-free if ${J(x,y) \not= \emptyset}$ for each pair (x, y) of vertices at distance 2 in G. Broersma and Vumar (in Math Meth Oper Res. doi:10.1007/s00186-008-0260-7) introduced ${\mathcal{P}_{3}}$ -dominated graphs defined as ${J(x,y)\,{\cup}\, J'(x,y)\not= \emptyset}$ for each ${x,y \in V(G)}$ with d(x, y) = 2. This class properly contains that of quasi-claw-free graphs, and hence that of claw-free graphs. In this note, we prove that a 2-connected ${\mathcal{P}_3}$ -dominated graph is 1-tough, with two exceptions: K 2,3 and K 1,1,3, and prove that every even connected ${\mathcal{P}_3}$ -dominated graph ${G\ncong K_{1,3}}$ has a perfect matching. Moreover, we show that every even (2p + 1)-connected ${\mathcal{P}_3}$ -dominated graph is p-extendable. This result follows from a stronger result concerning factor-criticality of ${\mathcal{P}_3}$ -dominated graphs.  相似文献   

2.
An edge of a k-connected graph is said to be k-contractible if its contraction results in a k-connected graph. A k-connected non-complete graph with no k-contractible edge, is called contraction critical k-connected. Let G be a contraction critical 5-connected graph, in this paper we show that G has at least ${\frac{1}{2}|G|}$ vertices of degree 5.  相似文献   

3.
Let G be a 2-edge-connected simple graph, and let A denote an abelian group with the identity element 0. If a graph G * is obtained by repeatedly contracting nontrivial A-connected subgraphs of G until no such a subgraph left, we say G can be A-reduced to G*. A graph G is bridged if every cycle of length at least 4 has two vertices x, y such that d G (x, y) < d C (x, y). In this paper, we investigate the group connectivity number Λ g (G) = min{n: G is A-connected for every abelian group with |A| ≥ n} for bridged graphs. Our results extend the early theorems for chordal graphs by Lai (Graphs Comb 16:165–176, 2000) and Chen et al. (Ars Comb 88:217–227, 2008).  相似文献   

4.
For a graph G and a set \({\mathcal{F}}\) of connected graphs, G is said be \({\mathcal{F}}\) -free if G does not contain any member of \({\mathcal{F}}\) as an induced subgraph. We let \({\mathcal{G} _{3}(\mathcal{F})}\) denote the set of all 3-connected \({\mathcal{F}}\) -free graphs. This paper is concerned with sets \({\mathcal{F}}\) of connected graphs such that \({\mathcal{F}}\) contains no star, \({|\mathcal{F}|=3}\) and \({\mathcal{G}_{3}(\mathcal{F})}\) is finite. Among other results, we show that for a connected graph T( ≠ K 1) which is not a star, \({\mathcal{G}_{3}(\{K_{4},K_{2,2},T\})}\) is finite if and only if T is a path of order at most 6.  相似文献   

5.
Let A be an elementary abelian group of order p k with k ≥ 3 acting on a finite p′-group G. The following results are proved. If γ k-2(C G (a)) is nilpotent of class at most c for any ${a \in A^{\#}}$ , then γ k-2(G) is nilpotent and has {c, k, p}-bounded nilpotency class. If, for some integer d such that 2 d  + 2 ≤ k, the dth derived group of C G (a) is nilpotent of class at most c for any ${a \in A^{\#}}$ , then the dth derived group G (d) is nilpotent and has {c, k, p}-bounded nilpotency class.  相似文献   

6.
Let R be a prime ring and set [x, y]1 = [x, y] = xyyx for ${x,y\in R}$ and inductively [x, y] k = [[x, y] k-1, y] for k > 1. We apply the theory of generalized polynomial identities with automorphisms and skew derivations to obtain the following result: If δ is a nonzero σ-derivation of R and L is a noncommutative Lie ideal of R so that [δ(x), x] k  = 0 for all ${x \in L}$ , where k is a fixed positive integer, then charR = 2 and ${R\subseteq M_{2}(F)}$ for some field F. This result generalizes the case of derivations by Lanski and also the case of automorphisms by Mayne.  相似文献   

7.
We prove that if G is highly connected, then either G contains a non-separating connected subgraph of order three or else G contains a small obstruction for the above conclusion. More precisely, we prove that if G is k-connected (with k ≥ 2), then G contains either a connected subgraph of order three whose contraction results in a k-connected graph (i.e., keeps the connectivity) or a subdivision of ${K_4^-}$ whose order is at most 6.  相似文献   

8.
Let G be a 2-edge-connected simple graph on n ≥ 14 vertices, and let A be an abelian group with the identity element 0. If a graph G* is obtained by repeatedly contracting nontrivial A-connected subgraphs of G until no such a subgraph left, we say that G can be A-reduced to G*. In this paper, we prove that if for every ${uv\not\in E(G), |N(u) \cup N(v)| \geq \lceil \frac{2n}{3} \rceil}$ , then G is not Z 3-connected if and only if G can be Z 3-reduced to one of ${\{C_3,K_4,K_4^-, L\}}$ , where L is obtained from K 4 by adding a new vertex which is joined to two vertices of K 4.  相似文献   

9.
Sufficient geometric conditions are given which determine when the Cauchy–Pexider functional equation f(x)g(y) = h(x + y) restricted to x, y lying on a hypersurface in ${\mathbb{R}^d}$ has only solutions which extend uniquely to exponential affine functions ${\mathbb{R}^d \to \mathbb{C}}$ (when f, g, h are assumed to be measurable and non-trivial). The Cauchy–Pexider-type functional equations ${\prod_{j=0}^df_j(x_j)=F(\sum_{j=0}^dx_j)}$ for ${x_0, \ldots,x_d}$ lying on a curve and ${f_1(x_1)f_2(x_2)f_3(x_3)=F(x_1+x_2+x_3)}$ for x 1, x 2, x 3 lying on a hypersurface are also considered.  相似文献   

10.
The aim of this paper is to present a generalization of the Appell sequences within the framework of Clifford analysis called shifted Appell sequences. It consists of sequences {M n (x)} n ≥ 0 of monogenic polynomials satisfying the Appell condition (i.e. the hypercomplex derivative of each polynomial in the sequence equals, up to a multiplicative constant, its preceding term) such that the first term M 0(x) = P k (x) is a given but arbitrary monogenic polynomial of degree k defined in ${\mathbb{R}^{m+1}}$ . In particular, we construct an explicit sequence for the case ${M_0(x)=\mathbf{P}_k(\underline x)}$ being an arbitrary homogeneous monogenic polynomial defined in ${\mathbb R^m}$ . The connection of this sequence with the so-called Fueter’s theorem will also be discussed.  相似文献   

11.
For the canonical heat kernels p t (x, y) associated with Dirichlet forms on post-critically finite self-similar fractals, e.g. the transition densities (heat kernels) of Brownian motion on affine nested fractals, the non-existence of the limit ${\lim_{t\downarrow 0}t^{d_{s}/2}p_{t}(x,x)}$ is established for a “generic” (in particular, almost every) point x, where d s denotes the spectral dimension. Furthermore the same is proved for any point x in the case of the d-dimensional standard Sierpinski gasket with d ≥ 2 and the N-polygasket with N ≥ 3 odd, e.g. the pentagasket (N = 5) and the heptagasket (N = 7).  相似文献   

12.
For a positive integer k, a {k}-dominating function of a graph G is a function f from the vertex set V(G) to the set {0, 1, 2, . . . , k} such that for any vertex ${v\in V(G)}$ , the condition ${\sum_{u\in N[v]}f(u)\ge k}$ is fulfilled, where N[v] is the closed neighborhood of v. A {1}-dominating function is the same as ordinary domination. A set {f 1, f 2, . . . , f d } of {k}-dominating functions on G with the property that ${\sum_{i=1}^df_i(v)\le k}$ for each ${v\in V(G)}$ , is called a {k}-dominating family (of functions) on G. The maximum number of functions in a {k}-dominating family on G is the {k}-domatic number of G, denoted by d {k}(G). Note that d {1}(G) is the classical domatic number d(G). In this paper we initiate the study of the {k}-domatic number in graphs and we present some bounds for d {k}(G). Many of the known bounds of d(G) are immediate consequences of our results.  相似文献   

13.
We consider a system of d non-linear stochastic heat equations in spatial dimension 1 driven by d-dimensional space-time white noise. The non-linearities appear both as additive drift terms and as multipliers of the noise. Using techniques of Malliavin calculus, we establish upper and lower bounds on the one-point density of the solution u(t, x), and upper bounds of Gaussian-type on the two-point density of (u(s, y),u(t, x)). In particular, this estimate quantifies how this density degenerates as (s, y) → (t, x). From these results, we deduce upper and lower bounds on hitting probabilities of the process ${\{u(t,x)\}_{t \in \mathbb{R}_+, x\in [0,1]}}$ , in terms of respectively Hausdorff measure and Newtonian capacity. These estimates make it possible to show that points are polar when d ≥ 7 and are not polar when d ≤ 5. We also show that the Hausdorff dimension of the range of the process is 6 when d > 6, and give analogous results for the processes ${t \mapsto u(t,x)}$ and ${x \mapsto u(t,x)}$ . Finally, we obtain the values of the Hausdorff dimensions of the level sets of these processes.  相似文献   

14.
We characterize solutions ${f, g : \mathbb{R} \to \mathbb{R}}$ of the functional equation f(x + g(x)y) = f(x)f(y) under the assumption that f is locally bounded above at each point ${x \in \mathbb{R}}$ . Our result refers to Go?a?b and Schinzel (Publ Math Debr 6:113–125, 1959) and Wo?od?ko (Aequationes Math 2:12–29, 1968).  相似文献   

15.
In this paper, we consider functions ${u\in W^{m,1}(0,1)}$ where m ≥ 2 and u(0) = Du(0) = · · · = D m-1 u(0) = 0. Although it is not true in general that ${\frac{D^ju(x)}{x^{m-j}} \in L^1(0,1)}$ for ${j\in \{0,1,\ldots,m-1\}}$ , we prove that ${\frac{D^ju(x)}{x^{m-j-k}} \in W^{k,1}(0,1)}$ if k ≥ 1 and 1 ≤ j + k ≤ m, with j, k integers. Furthermore, we have the following Hardy type inequality, $$\left\|{D^k\left({\frac{D^ju(x)}{x^{m-j-k}}}\right)}\right\|_{L^1(0,1)} \leq \frac {(k-1)!}{(m-j-1)!} \|{D^mu}\|_{L^1(0,1)},$$ where the constant is optimal.  相似文献   

16.
Let x and y be points chosen uniformly at random from ${\mathbb {Z}_n^4}$ , the four-dimensional discrete torus with side length n. We show that the length of the loop-erased random walk from x to y is of order n 2(log n)1/6, resolving a conjecture of Benjamini and Kozma. We also show that the scaling limit of the uniform spanning tree on ${\mathbb {Z}_n^4}$ is the Brownian continuum random tree of Aldous. Our proofs use the techniques developed by Peres and Revelle, who studied the scaling limits of the uniform spanning tree on a large class of finite graphs that includes the d-dimensional discrete torus for d ≥ 5, in combination with results of Lawler concerning intersections of four-dimensional random walks.  相似文献   

17.
Let k ≥ 5 be an odd integer and G = (V(G), E(G)) be a k-edge-connected graph. For ${X\subseteq V(G),e(X)}$ denotes the number of edges between X and V(G) ? X. We here prove that if ${\{s_i,t_i\}\subseteq X_i\subseteq V(G)(i=1,2),f}$ is an edge between s 1 and ${s_2,X_1\cap X_2=\emptyset,e(X_1)\le 2k-3,e(X_2)\le 2k-2}$ , and e(Y) ≥ k + 1 for each ${Y\subseteq V(G)}$ with ${Y\cap\{s_1,t_1,s_2,t_2\}=\{s_1,t_2\}}$ , then there exist paths P 1 and P 2 such that P i joins s i and ${t_i,V(P_i)\subseteq X_i}$ (i = 1, 2) and ${G-f-E(P_1\cup P_2)}$ is (k ? 2)-edge-connected, and in fact we give a generalization of this result.  相似文献   

18.
We study asymptotic properties of processes X, living in a Riemannian compact manifold M, solution of the stochastic differential equation (SDE) $$dX_t = dW_t(X_t) - \beta(t)\nabla V\mu_t(X_t)dt$$ with W a Brownian vector field, β(t) = alog(t + 1), $\mu_t = \frac{1}{t} \int_0^t \delta_{X_s}ds$ and $V\mu_t(x) = \frac{1}{t}\int_0^t V(x, X_s)ds$ , V being a smooth function. We show that the asymptotic behavior of μ t can be described by a non-autonomous differential equation. This class of processes extends simulated annealing processes for which V(x, y) is only a function of x. In particular we study the case $M = {\mathbb{S}}^n$ , the n-dimensional sphere, and V(x, y) = ?cos(d(x, y)), where d(x, y) is the distance on ${\mathbb{S}}^n$ , which corresponds to a process attracted by its past trajectory. In this case, it is proved that μ t converges almost surely towards a Dirac measure.  相似文献   

19.
Given a group A and a directed graph G, let F(G, A) denote the set of all maps ${f : E(G) \rightarrow A}$ . Fix an orientation of G and a list assignment ${L : V(G) \mapsto 2^A}$ . For an ${f \in F(G, A)}$ , G is (A, L, f)-colorable if there exists a map ${c:V(G) \mapsto \cup_{v \in V(G)}L(v)}$ such that ${c(v) \in L(v)}$ , ${\forall v \in V(G)}$ and ${c(x)-c(y)\neq f(xy)}$ for every edge e = xy directed from x to y. If for any ${f\in F(G,A)}$ , G has an (A, L, f)-coloring, then G is (A, L)-colorable. If G is (A, L)-colorable for any group A of order at least k and for any k-list assignment ${L:V(G) \rightarrow 2^A}$ , then G is k-group choosable. The group choice number, denoted by ${\chi_{gl}(G)}$ , is the minimum k such that G is k-group choosable. In this paper, we prove that every planar graph is 5-group choosable, and every planar graph with girth at least 5 is 3-group choosable. We also consider extensions of these results to graphs that do not have a K 5 or a K 3,3 as a minor, and discuss group choosability versions of Hadwiger’s and Woodall’s conjectures.  相似文献   

20.
A graph G is \(\{X,Y\}\)-free if it contains neither X nor Y as an induced subgraph. Pairs of connected graphs XY such that every 3-connected \(\{X,Y\}\)-free graph is Hamilton-connected have been investigated recently in (2002, 2000, 2012). In this paper, it is shown that every 3-connected \(\{K_{1,3},N_{1,2,3}\}\)-free graph is Hamilton-connected, where \(N_{1,2,3}\) is the graph obtained by identifying end vertices of three disjoint paths of lengths 1, 2, 3 to the vertices of a triangle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号