首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional coherent structures in the logarithmic region of the turbulent boundary layer in a water tunnel.The Reynolds number based on momentum thickness is Reθ = 2 460.The instantaneous velocity fields give evidence of hairpin vortices aligned in the streamwise direction forming very long zones of low speed fluid,which is flanked on either side by highspeed ones.Statistical support for the existence of hairpins is given by conditional averaged eddy within an increasing spanwise width as the distance from the wall increases,and the main vortex characteristic in different wall-normal regions can be reflected by comparing the proportion of ejection and its contribution to Reynolds stress with that of sweep event.The pre-multiplied power spectra and two-point correlations indicate the presence of large-scale motions in the boundary layer,which are consistent with what have been termed very large scale motions(VLSMs).The three dimen-sional spatial correlations of three components of velocity further indicate that the elongated low-speed and highspeed regions will be accompanied by a counter-rotating roll modes,as the statistical imprint of hairpin packet structures,all of which together make up the characteristic of coherent structures in the logarithmic region of the turbulent boundary layer(TBL).  相似文献   

2.
Characterization of hypersonic roughness-induced boundary-layer transition   总被引:1,自引:0,他引:1  
The flow-field structure in the vicinity and in the wake of an isolated 3D roughness element has been studied. Different experimental techniques have been coupled and supported by CFD simulation for a good understanding of the flow-field topology. The results have shown strong flow-field similarities for different roughness elements. A model describing the flow structure and interaction mechanisms has been proposed. This model is in good agreement with experimental and CFD results as well as the literature.  相似文献   

3.
Hypersonic flow transition from laminar to turbulent due to the surface irregularities, like local cavities, can greatly affect the surface heating and skin friction. In this work, the hypersonic flows over a three-dimensional rectangular cavity with length-to-width-to-depth ratio, L:W:D, of 19.9:3.57:1 at two angles of attack (AoA) were numerically studied with Improved-Delayed-Detached-Eddy Simulation (IDDES) method to highlight the mechanism of transition triggered by the cavity. The present approach was firstly applied to the transonic flow over M219 rectangular cavity. The results, including the fluctuating pressure and frequency, agreed with experiment well. In the hypersonic case at Mach number about 9.6 the cavity is seen as “open” at AoA of −10° but “closed” at AoA of −15° unconventional to the two-dimensional cavity case where the flow always exhibits closed cavity feature when the length-to-depth ratio L/D is larger than 14. For the open cavity flow, the shear layer is basically steady and the flow maintains laminar. For the closed cavity case, the external flow goes into the cavity and impinges on the bottom floor. High intensity streamwise vortices, impingement shock and exit shock are observed causing breakdown of these vortices triggering rapid flow transition.  相似文献   

4.
The variable interval time-averaging (VITA) technique is applied to the hot-wire measurements made in three axisymmetric, transitional hypersonic boundary layers. The average duration of conditionally sampled events is used to detect the transition region. It is found that the stability Reynolds number at the peak in the average duration of conditionally sampled events correlates well with the stability Reynolds number that is intermediate to the onset of transition and peak heating. This VITA-identified location of transition moves upstream under the effects of both an adverse pressure gradient and wall cooling; this agrees with previous experimental and computational studies. The VITA technique, therefore, offers an alternative method to obtain details of the location of transition in hypersonic stability experiments, in which hot-wire measurements of the transitioning boundary layers are made.  相似文献   

5.
6.
 Attachment line boundary layer transition on swept cylinders is studied in a low enthalpy hypersonic wind tunnel at M =7.14. Sweep angles of 60° and 70° are used and transition is detected by means of heat flux measurements. The influence on attachment line transition of single 2D-roughness elements, in the form of tripwires or slots, as well as 3D obstacles is determined and the results are analyzed with respect to Poll’s criterion. Received: 16 January 1996 / Accepted: 12 July 1996  相似文献   

7.
8.
Firstly, the steady laminar flow field of a hypersonic sharp cone boundary layer with zero angle of attack was computed.Then,two groups of finite amplitude T-S wave disturbances were introduced at the entrance of the computational field,and the spatial mode transition process was studied by direct numerical simulation (DNS) method. The mechanism of the transition process was analyzed.It was found that the change of the stability characteristics of the mean flow profile was the key issue.Furthermore,the characteristics of evolution for the disturbances of different modes in the hypersonic sharp cone boundary layer were discussed.  相似文献   

9.
10.
The mechanisms of development of slow time-dependent disturbances in the wall region of a hypersonic boundary layer are established and a diagram of the disturbed flow patterns is plotted; the corresponding nonlinear boundary value problem is formulated for each of these regimes. It is shown that the main factors that form the disturbed flow are the gas enthalpy near the body surface, the local viscous-inviscid interaction level, and the type, either subsonic or supersonic, of the boundary layer as a whole. Numerical and analytical solutions are obtained in the linear approximation. It is established that enhancement of the local viscous-inviscid interaction or an increased role for the main supersonic region of the boundary layer makes the disturbed flow by and large “supersonic”: the upstream propagation of the disturbances becomes weaker, while their downstream growth is amplified. Contrariwise, local viscous-inviscid interaction attenuation or an increased role for the main subsonic region of the boundary layer has the opposite effect. Surface cooling favors an increased effect of the main region of the boundary layer while heating favors an increased wall region effect. It is also found that in the regimes considered disturbances travel from the turbulent flow region downstream of the disturbed region under consideration counter to the oncoming flow, which may be of considerable significance in constructing the nonlinear stability theory.  相似文献   

11.
When the air temperature reaches 600 K or higher, vibration is excited. The specific heat is not a constant but a function of temperature. Under this condition, the transition position of hypersonic sharp wedge boundary layer is predicted by using the improved eN method considering variable specific heat. The transition positions with different Mach numbers of oncoming flow, half wedge angles, and wall conditions are computed condition, the nearer to the Mach number The results show that for the same oncoming flow condition and wall transition positions of hypersonic sharp wedge boundary layer move much leading edge than those of the flat plate. The greater the oncoming flow the closer the transition position to the leading edge.  相似文献   

12.
The aim of this work is to show the possibility of non-intrusively exciting second-mode instability waves with arbitrary frequency and amplitude in a hypersonic, planar boundary layer, by means of optical methods. Surface heat flux sensors were used to measure natural and artificially excited instability waves on a flat plate at zero angle of attack. The measurements were made using a stream-wise array of flush-mounted high-frequency heat flux sensors. In addition, surface pressure sensors were applied and show the instability waves, as well. The possibility to generate such waves by locally heating the model surface is shown.  相似文献   

13.
The laminar-turbulent transition is experimentally studied in boundary-layer flows on cones with a rectangular axisymmetric step in the base part of the cone and without the step. The experiments are performed in an A-1 two-step piston-driven gas-dynamic facility with adiabatic compression of the working gas with Mach numbers at the nozzle exit M = 12–14 and pressures in the settling chamber P0 = 60–600 MPa. These values of parameters allow obtaining Reynolds numbers per meter near the cone surface equal to Re 1e = (53–200) · 106 m −1. The transition occurs at Reynolds numbers Re tr = (2.3–5.7) · 106. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 3, pp. 76–83, May–June, 2007.  相似文献   

14.
The effect of an ultrasonically-absorptive coating on laminar-turbulent transition on cones with different nose bluntnesses is experimentally investigated. The experiments were performed with a cone with the semi-vertex angle of 7° set at zero incidence in the Mach 8 flow for three Reynolds numbers. A material with a chaotic micropore structure was used as the ultrasonically-absorptive coating. One side of the model, along its generator, was coated with the porous material, while the second represented a rigid surface. The laminar-turbulent transition location was determined from the results of heat flux distribution measurements. The heat flux fluctuations were also measured on the model surface. It was found that the laminar region length increased with an increase in the bluntness radius. The ultrasonically-absorptive coating with a chaotic microstructure effectively stabilizes the boundary layer for all bluntness radii considered, increasing the laminar region length by 30 to 85%.  相似文献   

15.
An algorithm for calculation of a spatial compressible turbulent boundary layer on the surface of a pointed body is developed. The algorithm is based on the numerical solution of three-dimensional equations and algebraic models of turbulence. The flow around a hypersonic aircraft model is calculated, and the resultant Stanton numbers are compared with experimental data. The influence of the Mach number, the angle of attack, and the Reynolds number on the boundary-layer parameters is studied. It is shown that the change in the location of the transition zone has a weak effect on the skin-friction coefficient in the region of developed turbulent flow. Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090.1Technical University, Delft, the Netherlands. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 1, pp. 115–125, January–February, 1999.  相似文献   

16.
17.
A high Reynolds number flat plate turbulent boundary layer was studied in a wind-tunnel experiment using particle image velocimetry (PIV). The flow is subjected to an adverse pressure gradient (APG) which is designed such that the boundary layer separates and reattaches, forming a weak separation bubble. With PIV we are able to get a more complete picture of this complex flow phenomenon. The view of a separation bubble being composed of large scale coherent regions of instantaneous backflow occurring randomly in a three-dimensional manner in space and time is verified by the present PIV measurements. The PIV database was used to test the applicability of various velocity scalings around the separation bubble. We found that the mean velocity profiles in the outer part of the boundary layer, and to some extent also the Reynolds shear-stress, are self-similar when using a velocity scale based on the local pressure gradient. The same can be said for the so called Perry–Schofield scaling, which suggests that the two velocity scales are connected. This can also be interpreted as an experimental evidence of the claimed relation between the latter velocity scale and the maximum Reynolds shear-stress.  相似文献   

18.
Planar laser-induced fluorescence (PLIF) imaging was performed to visualize the fin bow shock, separation shock, viscous shear layer and recirculation region of the flowfield at the junction of a blunt fin and a flat plate. Making use of the temperature dependence of the PLIF technique, images were made sensitive to temperature to provide qualitative information on the flowfield. The PLIF technique was also used as the basis for a flow-tagging technique, making it possible to measure a velocity component and to demonstrate the reverse flow of the separated region. Flow visualisation of the plane of symmetry allowed determination of the point of boundary layer separation, the angle of the separation shock and the bow shock standoff distance. These parameters were compared with predictions made by computational fluid dynamic simulations of the flowfield. Good agreement between theory and experiment was achieved. Comparisons between theoretical and experimental velocity measurements showed good agreement. Received 17 October 2000 / Accepted 13 November 2000  相似文献   

19.
An experimental study was carried out to investigate the effect of periodic blowing and suction on a turbulent boundary layer. Particle image velocimetry (PIV) was used to probe the characteristics of the flow. Local forcing was introduced to the boundary layer via a sinusoidally-oscillating jet issuing from a thin spanwise slot. Three forcing frequencies (f+=0.44, 0.66 and 0.88) with a fixed forcing amplitude (A+=0.6) were employed at Re θ =690. The effect of three different forcing angles (α=60°, 90° and l20°) was investigated under a fixed forcing frequency (f+=0.088). The PIV results showed that the wall-region velocity decreases on imposition of the local forcing. Inspection of the phase-averaged velocity profiles revealed that spanwise large-scale vortices are generated downstream of the slot and persist farther downstream. The highest reduction in skin friction was achieved at the highest forcing frequency (f+=0.088) and a forcing angle of α=120°. The spatial fraction of the vortices was examined to analyze the skin friction reduction.  相似文献   

20.
Interactions of disturbances in a hypersonic boundary layer on a porous surface are considered within the framework of the weakly nonlinear stability theory. Acoustic and vortex waves in resonant three-wave systems are found to interact in the weak redistribution mode, which leads to weak decay of the acoustic component and weak amplification of the vortex component. Three-dimensional vortex waves are demonstrated to interact more intensively than two-dimensional waves. The feature responsible for attenuation of nonlinearity is the presence of a porous coating on the surface, which absorbs acoustic disturbances and amplifies vortex disturbances at high Mach numbers. Vanishing of the pumping wave, which corresponds to a plane acoustic wave on a solid surface, is found to assist in increasing the length of the regions of linear growth of disturbances and the laminar flow regime. In this case, the low-frequency spectrum of vortex modes can be filled owing to nonlinear processes that occur in vortex triplets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号