首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Improved pulse sequences DIFN (abbreviation of the words: DIFferentiation by N pulses), 90° − τ1 − 180° − τ1 − … 180° − τn, with optimised time intervals τ1 for T1 measurement and contrast enhancing in NMR imaging are presented. The pulse sequences DIFN have a better sensitivity to T1 than the well-known pulse sequence SR. In contrast to the IR pulse sequence, the information given by the DIFN pulse sequence is more reliable, because the NMR signal does not change its sign. For a given time interval τ0 ≤ (0.1 − 0.3) T1′ the DIFN pulse sequences serve as T1-filters. They pass the signal components with relatively short T1 < T1′ and suppress the components with relatively long T1 < T1′. The effects of the radiofrequency field inhomogeneity and inaccurate adjusting of pulse lengths are also considered. It is also proposed in this work to use the joint T1T2-contrast in NMR imaging obtained as a result of applying the DIFN pulse sequences in combination with the well-known Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence. The region of interest, where the contrast should be especially enhanced, is specified by the two times at which measurements are performed, which allow the amplitudes of pixels to reach some defined levels by spin-lattice and spin-spin relaxation.  相似文献   

2.
During adiabatic excitation, the nuclear magnetization in the transverse plane is subject to T(2) (spin-spin) relaxation, depending on the pulse length τ. Here, this property is exploited in a method of measuring T(2) using the ratio of NMR signals acquired with short and long-duration self-refocusing adiabatic pulses, without spin-echoes. This Dual-τ method is implemented with B(1)-insensitive rotation (BIR-4) pulses. It is validated theoretically with Bloch equation simulations independent of flip-angle, and experimentally in phantoms. Dual-τT(2) measurements are most accurate at short T(2) where results agree with standard spin-echo measures to within 10% for T(2) ≤ 100 ms. Dual-τ MRI performed with a long 0° BIR-4 pre-pulse provides quantitative T(2) imaging of phantoms and the human foot while preserving desired contrast and functional properties of the rest of the MRI sequence. A single 0° BIR-4 pre-pulse can provide T(2) contrast-weighted MRI and serve as a "T(2)-prep" sequence with a lower B(1) requirement than prior approaches. Finally, a Tri-τ experiment is introduced in which both τ and flip-angle are varied, enabling measurement of T(2), T(1) and signal intensity in just three acquisitions if flip-angles are well-characterized. These new methods can potentially save time and simplify relaxation measurements and/or contrast-weighted NMR and MRI.  相似文献   

3.
We present a dark matter model to explain the excess events in the electron recoil data recently reported by the Xenon1 T experiment. In our model, dark matter χ annihilates into a pair of on-shell particles Φ, which subsequently decay into the ψψ final state;ψ interacts with electrons to generate the observed excess events. Because of the mass hierarchy, the velocity of ψ can be rather large and can have an extended distribution, providing a good fit to the electron recoil energy spectrum. We estimate the flux of ψ from dark matter annihilations in the galaxy and further determine the interaction cross section, which is sizable but sufficiently small to allow ψ to penetrate the rocks to reach the underground labs.  相似文献   

4.

Purpose

A direct correlation between T, T2 and quantified proteoglycan and collagen contents in human osteoarthritic cartilage has yet to be documented. We aimed to investigate the orientation effect on T and T2 values in human osteoarthritic cartilage and to quantify the correlation between T, T2 vs. biochemical composition and histology in human osteoarthritic cartilage.

Materials and methods

Thirty-three cartilage specimens were collected from patients who underwent total knee arthroplasty due to severe osteoarthritis and scanned with a 3T MR scanner for T and T2 quantification. Nine specimens were scanned at three different orientations with respect to the B0: 0°, 90° and 54.7°. Core punches were taken after MRI. Collagen and proteoglycan contents were quantified using biochemical assays. Histology sections were graded using Mankin scores. The correlation between imaging parameters, biochemical contents and histological scores were studied.

Results

Both mean T and T2 at 54.7° were significantly higher than those measured at 90° and 0°, with T showing less increase compared to T2. R (1/T) values had a significant but moderate correlation with proteoglycan contents (R=.45, P=.002), while R2 (1/T2) was not correlated with proteoglycan. No significant correlation was found between relaxation times (T or T2) and collagen contents. The T values of specimen sections with high Mankin scores were significantly higher than those with low Mankin scores (P<.05).

Conclusions

Quantitative MRI has a great potential to provide noninvasive imaging biomarkers for cartilage degeneration in osteoarthritis.  相似文献   

5.
For the first time,by taking into account all the irreducible representations and their components in the electron-phonon interaction (EPI) as well as all the levels and the admixtures of wavefunctions within d^3 electronic electron-phonon interaction (EPI) as well as all the levels and the admixtures of wavefunctions within d^3 electronic configuration,the values of parameters in expressions of Raman and optical-branch terms of thermal shifts (TS) due to EPI for three levels,^4T2 band and ^4T1 band of ruby have been evaluated;the contributions to TS of ^4T2 and ^4T1 broad bands from thermal expansion have also been calculated;and then,the TS of the peak energies of ^4T2 and ^4T1 broad bands have been calculated.The results are in satisfactory agreement with observed data.The values of single-electron reduced matrix elements representing the strengths of EPI of ^4T2 and ^4T1 bands have respectively been determined.For TS of the peak energies of ^4T2 and ^4T1 bands,it is found that the contribution to TS from the second-order term in EPI Hamiltonian is dominant;TS due to EPI of acoustic branches are over two times as much as those of optical branches,and both of them increase rapidly with temperature;the neighbor-level term is insignificant;the contribution to TS from thermal expansion is specially important,and all the three terms of TS of ^4T2 or ^4T1 band are red shifts.  相似文献   

6.
T1-2223和T1-2212相超导样品经Tl2O3蒸气处理超导转变温度发生明显的变化,Tc的变化来源于样品中T1含量的变化,Tl2O3蒸气能有效地阻止T1基超导体中T1的损失,随着Tl2O3蒸气压的增加T1损失明显减少,这是一种控制T1浓度的有效方法。  相似文献   

7.
Considering the perturbation,the results of theoretical calculation of five Rydberg series energy levels 6s~2ns~2S_(1/2)(n=7-20),6s~2nd~2D_(3/2)(n=6-20),6~s2nd~2D_(5/2)(n=6-20),6s~2np~2p_(1/2)~0(n=7-20),and 6s~2np~2p_(3/2)~0(n=7-20)for T11 are presented using the weakest bound electron potential model(WBEPM) theory.Furthermore,the radiative lifetimes of this five series are also calculated.The calculated values of energy levels and lifetimes are in good agreement with the experimental results.  相似文献   

8.
The closeness of low-lying T1u and T1g levels of C 60 ? could enable their mixing under an odd parity vibration of (T1 u + T1 g ? (hg + τ1 u)type. In addition, the two levels are susceptible to Jahn-Teller interaction due to five-fold degenerate hg vibrations. This complex problem of (T1u+T1g)?(hg1u) vibronic interaction is transformed to a form similar to T2g ? (εg + τ2g) vibronic problem of octahedral symmetry. The problem is analysed in an infinite coupling model and compared with the experimental spectroscopic results for the C 60 ? radical. The resulting parameters are used to calculate the pair-binding energy and superconducting transition temperature in C 60 n? fullerides. Vibronic mixing with the T1g level is found to be responsible for maximising the pair-binding energy at the doping level n=3. It is also found to be an important source of Tc enhancement.  相似文献   

9.
PurposeTo investigate the in-vivo precision and clinical feasibility of 3D-QALAS - a novel method for simultaneous three-dimensional myocardial T1- and T2-mapping.MethodsTen healthy subjects and 23 patients with different cardiac pathologies underwent cardiovascular 3 T MRI examinations including 3D-QALAS, MOLLI and T2-GraSE acquisitions. Precision was investigated in the healthy subjects between independent scans, between dependent scans and as standard deviation of consecutive scans. Clinical feasibility of 3D-QALAS was investigated for native and contrast enhanced myocardium in patients. Data were analyzed using mean value and 95% confidence interval, Pearson correlation, Paired t-tests, intraclass correlation and Bland-Altman analysis.ResultsAverage myocardial relaxation time values and SD from eight repeated acquisitions within the group of healthy subjects were 1178 ± 18.5 ms (1.6%) for T1 with 3D-QALAS, 52.7 ± 1.2 ms (2.3%) for T2 with 3D-QALAS, 1145 ± 10.0 ms (0.9%) for T1 with MOLLI and 49.2 ± 0.8 ms (1.6%) for T2 with GraSE.Myocardial T1 and T2 relaxation times obtained with 3D-QALAS correlated very well with reference methods; MOLLI for T1 (r = 0.994) and T2-GraSE for T2 (r = 0.818) in the 23 patients. Average native/post-contrast myocardial T1 values from the patients were 1166.2 ms/411.8 ms for 3D-QALAS and 1174.4 ms/438.9 ms for MOLLI. Average native myocardial T2 values from the patients were 53.2 ms for 3D-QALAS and 54.4 ms for T2-GraSE.ConclusionsRepeated independent and dependent scans together with the intra-scan repeatability, demonstrated all a very good precision for the 3D-QALAS method in healthy volunteers. This study shows that 3D T1 and T2 mapping in the left ventricle is feasible in one breath hold for patients with different cardiac pathologies using 3D-QALAS.  相似文献   

10.
The atomic and electronic structures of T1 and In on Si(111) surfaces are investigated using the firstprinciples total energy calculations. Total energy optimizations show that the energetically favored structure is 1/3 ML T1 adsorbed at the T4 sites on Si(111) surfaces. The adsorption energy difference of one T1 adatom between (√3 × √3) and (1 × 1) is less than that of each In adatom. The DOS indicates that TI 6p and Si 3p electrons play a very important role in the formation of the surface states. It is concluded that the bonding of TI adatoms on Si(111) surfaces is mainly polar covalent, which is weaker than that of In on Si(111). So T1 atom is more easy to be migrated than In atom in the same external electric field and the structures of T1 on Si(111) is prone to switch between (√3 × √3) and (1 × 1).  相似文献   

11.
12.
刘东华  孙朝晖 《物理与工程》2004,14(3):30-33,45
探讨核磁共振T1、T2加权成像的图像特点。  相似文献   

13.
Both NMR spectroscopy and MRI were used to investigate the dependencies of multi-component T2 and T1ρ relaxation on the anisotropy of bovine nasal cartilage (BNC). The non-negative least square (NNLS) method and the multi-exponential fitting method were used to analyze all experimental data. When the collagen fibrils in nasal cartilage were oriented at the magic angle (55°) to the magnetic field B0, both T2 and T1ρ were single component, regardless of the spin-lock field strength or the echo spacing time in the pulse sequences. When the collagen fibrils in nasal cartilage were oriented at 0° to B0, both T2 and T1ρ at a spin-lock field of 500 Hz had two components. When the spin-lock field was increased to 1000 Hz or higher, T1ρ relaxation in nasal cartilage became a single component, even when the specimen orientation was 0°. These results demonstrate that the specimen orientation must be considered for any multi-component analysis, even for nasal cartilage that is commonly considered homogenously structured. Since the rapidly and slowly relaxing components can be attributed to different portions of the water population in tissue, the ability to resolve different relaxation components could be used to quantitatively examine individual molecular components in connective tissues.  相似文献   

14.
The thalamus serves as the central relay station for the brain. It processes and relays sensory and motor signals between different subcortical regions and the cerebral cortex and it can be divided into several neuronal clusters referred to as nuclei. Each of these can possibly be subdivided into sub-nuclei. Accurate and reliable identification of thalamic nuclei is important for surgical interventions and neuroanatomical studies. This is however a challenging task because the small size of the nuclei and the lack of contrast over the thalamus region in clinically acquired images does not permit the visualization of their boundaries. A number of methods have been developed for thalamus parcellation but the vast majority of these relies on diffusion imaging or functional imaging. The low resolution of these images only permit localizing the largest nuclei. In this work we propose a method to segment smaller nuclei. We first present a protocol to build histological-like atlases from a series of high-field (7 Tesla) MR images acquired with different pulse sequences that each permits to visualize the boundaries of a subset of the nuclei. We use this protocol to scan 9 subjects and we manually delineate 23 thalamic nuclei following the Morel atlas naming convention for each of these subjects. Manual contours for the nuclei are subsequently utilized to create statistical shape models. With these data, we compare four methods for the segmentation of thalamic nuclei in 3 T images we have also acquired for the 9 subjects included in the study: (1) single atlas, (2) multi atlas, (3) statistical shape, and (4) hierarchical statistical shape in which thalamic nuclei are hierarchically fitted to the images, starting from the largest ones. Results of a leave-one-out validation study conducted on the nine image sets we have acquired show that the multi atlas approach improves upon the single atlas approach for most nuclei. Segmentations obtained with the hierarchical statistical shape model yield the highest accuracy, with dice coefficients ranging from 0.53 to 0.90, mean surface errors from 0.27 mm to 0.64 mm, and maximum surface errors from 1.31 mm to 2.52 mm for all nuclei averaged across test cases. This suggests the feasibility of using such approach for localizing thalamic substructures in clinically acquired MR volumes. It may have a direct impact on surgeries such as Deep Brain Stimulation procedures that require the implantation of stimulating electrodes in specific thalamic nuclei.  相似文献   

15.
Properties of secondaries associated with a high-p T charged trigger particle (3<p T <5 GeV/c) were studied for αp and αα interactions at c.m. energies \(\sqrt s = 88\) GeV and 125 GeV, respectively. Thep T distributions of secondaries in the away-jet and trigger-jet regions were compared with those for high-p T pp interactions. No statistically significant differences were seen, except at lowp T . Momentum and angular distributions of spectator and leading protons were studied as a function of charge and rapidity of the trigger hadron. The observed correlations between trigger charge and number of spectator protons provide evidence of valence quark contributions to the trigger jet.  相似文献   

16.
17.
18.
Using the mapping approach via the projective Riccati equations, several types of variable separated solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation are obtained, including multiple-soliton solutions, periodic-soliton solutions, and Weierstrass function solutions. Based on a periodic-soliton solution, a new type of localized excitation, i.e., the four-dromion soliton, is constructed and some evolutional properties of this localized structure are briefly discussed.  相似文献   

19.
Depth and orientational dependencies of microscopic magnetic resonance imaging (MRI) T(2) and T(1ρ) sensitivities were studied in native and trypsin-degraded articular cartilage before and after being soaked in 1 mM Gd-DTPA(2-) solution. When the cartilage surface was perpendicular to B(0), a typical laminar appearance was visible in T(2)-weighted images but not in T(1ρ)-weighted images, especially when the spin-lock field was high (2 kHz). At the magic angle (55°) orientation, neither T(2)- nor T(1ρ)-weighted image had a laminar appearance. Trypsin degradation caused a depth- and orientational-dependent T(2) increase (4%-64%) and a more uniform T(1ρ) increase at a sufficiently high spin-lock field (55%-81%). The presence of the Gd ions caused both T(2) and T(1ρ) to decrease significantly in the degraded tissue (6%-38% and 44%-49%, respectively) but less notably in the native tissue (5%-10% and 16%-28%, respectively). A quantity Sensitivity was introduced that combined both the percentage change and the absolute change in the relaxation analysis. An MRI experimental protocol based on two T(1ρ) measurements (without and with the presence of the Gd ions) was proposed to be a new imaging marker for cartilage degradation.  相似文献   

20.
T1ρ imaging is useful in a number of clinical applications. T1ρ preparation methods, however, are sensitive to non-uniformities of the B0 magnetic field and the B1 RF field. These common system imperfections can result in image artifacts and quantification errors in T1ρ imaging. We report on a phase-cycling method which can eliminate B1 RF inhomogeneity effects in T1ρ imaging. This method does not only correct for image artifacts but also for T2ρ contamination caused by B1 RF inhomogeneity. The presence of B0 magnetic field inhomogeneity can compromise the effectiveness of this method for B1 RF inhomogeneity correction. We demonstrate that, by combining the spin-locking scheme reported by Dixon et al. (Myocardial suppression in vivo by spin locking with composite pulses. Magn Reson Med 1996; 36:90-94) with phase cycling, we can simultaneously correct B0 magnetic field inhomogeneity effects and B1 RF inhomogeneity effects in T1ρ imaging. Phantom and in vivo data sets are used to demonstrate the proposed methods and to compare them with other existing T1ρ preparation methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号