首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The cetyltrimethyl ammonium bromide (CTAB) was used as a swelling agent to be intercalated into the galleries of the montmorillonite (MMT) platelets to get the organic MMT (CMMT). Then 4,4′‐diphenylmethane diisocyanate (MDI) were grafted on CMMT by the reaction between hydroxyls in organic MMT platelets and MDI to synthesize the MDI modified CMMT (MCMMT). Polyurethane (PU)/MCMMT composites were prepared by situ polymerization. The MCMMT platelets dispersed in a PU matrix in nanometer scale. The dispersion and intercalation degree of the MCMMT platelets decreased with increase in the content of MCMMT. Under the same content of fillers, the tensile strength and tear strength of PU/MCMMT nanocomposites were higher than those of PU/organic MMT nanocomposites. The reinforcing effect of the MCMMT platelets to the PU was better than that of the organic MMT platelets. With increase in the content of MCMMT, the tensile strength and tear strength of the PU/MCMMT nanocomposites were increased, while the extent of the increase slowed down. Compared with those of PU, the thermal stability of PU/MCMMT nanocomposites was increased. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
In the present work, graphene oxide (GO) and reduced graphene oxide (RGO) were incorporated at low‐density polyethylene (LDPE)/ethylene vinyl acetate (EVA) copolymer blend using solution casting method. Monolayer GO with 1‐nm thickness and good transparency was synthesized using the well‐known Hummers's method. Fourier transform infrared and X‐ray photoelectron spectroscopy data exhibited efficient reduction of GO with almost high C/O ratio of RGO. Scanning electron microscopy showed the well distribution of GO and RGO within LDPE/EVA polymer matrix. The integrating effects of GO and RGO on mechanical and gas permeability of prepared films were examined. Young's modulus of nanocomposites are improved 65% and 92% by adding 7 wt% of GO and RGO, respectively. The tensile measurements showed that maximum tensile strength emerged in 3 wt% of loading for RGO and 5 wt% for GO. The measured oxygen and carbon dioxide permeability represented noticeably the attenuation of gas permeability in composite films compared with pristine LDPE/EVA blend. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
High oxygen barrier films were prepared based on low‐density polyethylene (LDPE)/ethylene vinyl alcohol (EVOH)/ nanoclay and polyethylene‐grafted‐maleic anhydride (LDPE‐g‐MA) as a compatibilizer. Box–Behnken statistical experiment design methodology was employed to study the effects of nanoclay, LDPE‐g‐MA, and EVOH presence and their contents on various properties of the final films. The R2 parameter varied between 0.89 and 0.99 for all the obtained responses. The morphology of the samples was evaluated. Results of oxygen transfer rate (OTR) test indicated that the addition of EVOH up to 30 wt% to neat LDPE can decrease oxygen permeability significantly. The addition of nanoclay also decreased the permeability of resulting films but, LDPE‐g‐MA reduced the permeability of the films only at an optimal content. Elastic modulus was increased with the addition of nanoclay, EVOH, and LDPE‐g‐MA to the matrix. An increase in EVOH content in the samples improved the tensile strength. Effect of nanoclay on tensile strength was highly dependent on the presence of a compatibilizer. The addition of compatibilizer to the samples and increasing its content enhanced the tensile strength of the specimens. Incorporation of nanoclay, EVOH, and LDPE‐g‐MA to the LDPE matrix and increasing the amount of these components in the samples led to higher storage modulus, zero shear rate viscosity, and shear thinning exponent, but, lowered the terminal slope and the frequency of intersection point of storage modulus (G′) and loss modulus (G″). The only exception was that EVOH increment resulted in a lower shear thinning exponent. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.

Soybean oil-based polyurethane (PU)/epoxy (EP) interpenetrating polymer network (IPN) nanocomposites were prepared with natural attapulgite (N-ATT) and acid-treated attapulgite (A-ATT). The structure, glass transition, damping properties, thermal stability, mechanical properties and morphology of PU/EP IPN/ATT nanocomposites were characterized by X-ray diffraction (XRD), dynamic mechanical analysis (DMA), thermogravimetric analyzer, universal test machine and scanning electronic microscope (SEM). XRD showed that interaction with PU did not change the crystal structures of ATT. DMA results revealed the addition of ATT improved the glass transition temperature of the soybean oil-based PU/EP IPN, especially for A-ATT. However, the incorporation of ATT slightly decreased the damping properties of the soybean oil-based PU/EP IPN. Tensile tests confirmed that A-ATT had a significant reinforcement effect on the soybean oil-based PU/EP IPN. The tensile strength of the soybean oil-based PU/EP IPN increased by 56% with the addition of 4 mass% A-ATT. SEM demonstrated the relatively uniform dispersion of both N-ATT and A-ATT in the soybean oil-based PU/EP IPN matrix.

  相似文献   

5.
The effects of the compatibilizer polyethylene grafted with glycidyl methacrylate (PE‐g‐GMA) on the properties of low‐density polyethylene (LDPE) (virgin and reprocessed)/corn starch blends were studied. LDPE (virgin and reprocessed)/corn starch blends containing 30, 40 and 50 wt% starch, with or without compatibilizer, were prepared by extrusion and characterized by the melt flow index (MFI), tensile test, dynamic mechanical analysis (DMTA) and light microscopy. The addition of starch to LDPE reduced the MFI values, the tensile strength and the elongation at break, whereas the modulus increased. The decreases in the MFI and tensile properties were most evident when 40 and 50 wt% starch were added. Blends containing 3 wt% PE‐g‐GMA had higher tensile strength values and lower MFI values than blends without compatibilizer. Light microscopy showed that increasing the starch content resulted in a continuous phase of starch. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The unison of vegetable oil‐based hyperbranched polymers with nanotechnology can unhook myriad of avant‐garde applications of such materials. Thus Mesua ferrea L. seed oil‐based hyperbranched polyurethane (HBPU)/clay nanocomposites and their performance, with special reference to adhesive strength, are reported for the first time. The nanocomposites of the hyperbranched polyurethane with organically modified nanoclay were obtained by ex situ solution technique and cured by bisphenol‐A‐based epoxy with poly(amido amine) hardener system. The partially exfoliated and well‐distributed structure of nanoclay was confirmed by XRD, SEM, and TEM studies. FTIR spectra indicate the presence of H‐bonding between nanoclay and the polymer matrix. Two times improvement in the adhesive strength and scratch hardness, 10 MPa increments in the tensile strength and 112°C more thermo‐stability have been observed without much affecting the impact resistance, bending, and elongation at break of the nanocomposites compared to the pristine epoxy modified HBPU system. Thus, the resulted nanocomposites are promising materials for different advanced applications including adhesive. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Polypropylene (PP)/organo‐montmorillonite (Org‐MMT) nanocomposites toughened with maleated styrene‐ethylene‐butylene‐styrene (SEBS‐g‐MA) were prepared via melt compounding. The structure, mechanical properties, and dynamic mechanical properties of PP/SEBS‐g‐MA blends and their nanocomposites were investigated by X‐ray diffraction (XRD), polarizing optical microscopy (POM), tensile, and impact tests. XRD traces showed that Org‐MMT promoted the formation of β‐phase PP. The degree of crystallinity of PP/SEBS‐g‐MA blends and their nanocomposites were determined from the wide angle X‐ray diffraction via profile fitting method. POM experiments revealed that Org‐MMT particles served as nucleating sites, resulting in a decrease of the spherulite size. The essential work of fracture approach was used to evaluate the tensile fracture toughness of the nanocomposites toughened with elastomer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3112–3126, 2005  相似文献   

8.
An exploratory pioneering study on the fabrication of nylon‐6/montmorillonite (MMT) nanocomposites with the aid of water as an intercalating/exfoliating agent via melt compounding in a twin‐screw extruder was conducted. Commercial nylon‐6 pellets and pristine MMT powder were directly fed into the hopper of the extruder. Water was then injected into the extruder downstream. After interactions with the nylon‐6 melt/pristine MMT system, water was removed from the extruder further downstream via a venting gate. As such, no third‐component residual was left within the extrudates. Transmission electron microscopy micrographs showed that pristine MMT was uniformly dispersed in the nylon‐6 matrix. The contact time between water and the nylon‐6/pristine MMT system inside the extruder was so short that nylon‐6 was subjected to very little hydrolysis, if any. The resultant nanocomposites showed higher stiffness, superior tensile strength, and improved thermal stability in comparison with their counterparts obtained without water assistance and the nylon‐6/organic MMT nanocomposites. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1100–1112, 2005  相似文献   

9.
Polyurethane/organically modified montmorillonite (PU/O‐MMT) nanocomposites were electrospun and the effect of O‐MMT on the morphology and physical properties of the PU/O‐MMT nanofiber mats were investigated for the first time. The average diameters of the PU/O‐MMT nanofibers were ranged from 150 to 410 nm. The conductivities of the PU/O‐MMT solutions were linearly increased with increasing the content of O‐MMT, which caused a decrease in the average diameters of the PU/O‐MMT nanofibers. The as‐electrospun PU and PU/O‐MMT nanofibers were not microphase separated. The exfoliated MMT layers were well distributed within the PU/O‐MMT nanofibers and oriented along the fiber axis. When the PU/O‐MMT nanofibers were annealed, the exfoliated MMT layers hindered the microphase separation of the PU. The electrospinning of PU/O‐MMT nanocomposites resulted in PU nanofiber mats with improved Young's modulus and tensile strength. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3171–3177, 2005  相似文献   

10.
Heat shrinkability of the polymer, which depends on the elastic memory, is being utilized in various applications, mainly in the field of encapsulation. The elastic memory is introduced into the system in the form of an elastomeric phase. Here the blends of ethylene vinyl acetate and polyurethane were studied with reference to their shrinkability, introducing crosslinking in both the phases. It is found that with increase in elastomer content the shrinkage increased to a certain level and then decreased. With increase in cure time shrinkage is decreased. It is seen that high‐temperature (HT) stretched samples showed higher shrinkage than room temperature (RT) stretched one. Generally, the crystallinity of the HT stretched sample is higher than that of low‐temperature stretched sample, which is again higher than that of original sample. From high temperature differential scanning calorimetry it is found that with increase in PU content stability towards oxygen is increased and further high temperature processing decreases the initial degradation temperature but enhances the rate of degradation. From scanning electron microscopy it is seen that an HT stretched sample is more elongated than an RT stretched one. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
New nanocomposites based on bacterial cellulose nanofibers (BCN) and polyurethane (PU) prepolymer were prepared and characterized by SEM, FT-IR, XRD, and TG/DTG analyses. An improvement of the interface reaction between the BCN and the PU prepolymer was obtained by a solvent exchange process. FT-IR results showed the main urethane band at 2,270 cm?1 to PU prepolymer; however, in nanocomposites new bands appear as disubstituted urea at 1,650 and 1,550 cm?1. In addition, the observed decrease in the intensity of the hydroxyl band (3,500 cm?1) suggests an interaction between BCN hydroxyls and NCO-free groups. The nanocomposites presented a non-crystalline character, significant thermal stability (up to 230 °C) and low water absorption when compared to pristine BCN.  相似文献   

12.
This study presents characterization and comparison of the properties of metallocene-catalyzed polyethylene (mPE)/thermoplastic starch (TPS) blends and nanocomposites, which contain maleic anhydride-grafted mPE (mPE-g-MA) compatibilizer and 20A-reinforced mPE-g-MA nanocompatibilizer, respectively. The results from X-ray diffraction (XRD) and transmission electron microscope (TEM) experiments revealed that mPE/TPS blend-based nanocomposites were achieved with the incorporation of the nanocompatibilizer. Clay 20A was also noted to preferentially locate within the interface between mPE and TPS, as well as within the mPE matrix in the nanocomposites. The crystallization temperature of mPE increased in the blends and nanocomposites, confirming the role of TPS and 20A as nucleating agents for mPE. However, the melting temperature and the glass transition temperature of mPE hardly changed in the blends and the nanocomposites. Clay 20A also served as a heat barrier, which greatly increased the thermal stability of the nanocomposites. There was a maximum increase of up to 36% and 40% obtained in tensile strength and Young's modulus, respectively, for the nanocomposites as compared to that of the blend counterparts. It was also determined that nanocomposites have a slightly lower water uptake character as compared to the blends. Hopefully, the results presented here can pave the way for further researches on the development and innovation of environmentally friendly polymeric systems.  相似文献   

13.
The disorderly exfoliated layered double hydroxides/poly(methyl methacrylate) (LDHs/PMMA) nanocomposites were obtained in a two-stage process by the in situ bulk polymerization of methyl methacrylate (MMA) in the presence of 10-undecenoate intercalated LDH (LDH-U). The dispersed behavior of the LDH-U in the PMMA matrix was identified by using X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV/visible transmission spectroscopy. All these nanocomposites showed significantly enhancement of glass transition temperature (Tg) and the decomposition temperatures compared to pristine PMMA, as identified in differential scanning calorimetry (DSC) and thermogravimetric (TGA) analysis. The tensile modulus of these nanocomposites was also enhanced by incorporating the LDH-U into the PMMA matrix and increased as the amount of LDH-U increased. According to the analytical method of Ozawa-Flynn, the degradation activation energies of these nanocomposites are higher than that of pristine PMMA.  相似文献   

14.
4,4′-Diphenylmethane diisocyanate (MDI) was grafted on to organic–montmorillonite (OMMT) by reaction between hydroxyl groups (−OH) on surface of the montmorillonite and the isocyanate groups (−NCO) of MDI, thus forming grafted organic–montmorillonite (MOMMT). Intercalated nanocomposites based on polyurethane (PU) and MOMMT were prepared by solution intercalation technology. The interface interaction of PU/MOMMT nanocomposites was better than that of PU/MMT composites. The tensile strength, elongation at break, and tear strength of the PU/MOMMT nanocomposites increased for MOMMT content up to 5% w/w, and then decreased with further increase in MOMMT content. At the same filler content, the tensile strength and tear strength of PU/MOMMT nanocomposites were higher than those of PU/OMMT nanocomposites, whereas the elongations at break of PU/MOMMT nanocomposites were smaller than those of PU/OMMT nanocomposites. The initial temperatures of weight loss of PU/MOMMT nanocomposites were lower than for PU/MMT composites in the first step of thermal degradation, whereas in the second step initial temperatures of weight loss were higher for PU/MOMMT nanocomposites.  相似文献   

15.
The mechanical properties and heat shrinkability of electron beam crosslinked polyethylene–octene copolymer were studied. It was found that gel content increases with increased radiation dose. The analysis of results by the Charlesby–Pinner equation revealed that crosslinking was dominant over chain scission upon irradiation. Formation of a crosslinked structure in the electron beam irradiated sample was confirmed by the presence of a plateau of dynamic storage modulus above the melting point of the polymer. Wide-angle X-ray diffraction revealed that there was little change in crystallinity for the irradiated samples, indicating that radiation crosslinking occurs in the amorphous region of the polymer. The tensile modulus increases, whereas the elongation at break decreases with increased radiation dose. The heat shrinkability of the material increased with an increased radiation dose because the radiation-induced crosslinks serve as memory points during the shrinking process.  相似文献   

16.
A Haake torque rheometer equipped with an internal mixer is used to study the influence of the amount of sodium montmorillonite (Na+‐MMT) and organically modified MMT (O‐MMT) on X‐ray diffraction (XRD), morphology, and mechanical characteristics of rigid poly (vinyl chloride) (PVC)/Na+‐MMT and PVC/O‐MMT nanocomposites, respectively. Results of XRD and transmission electron microscopy (TEM) indicate that MMT is partially encapsulated and intercalated in the rigid PVC/Na+‐MMT nanocomposites. However, results of XRD and TEM show MMT is partially intercalated and exfoliated in the rigid PVC/O‐MMT nanocomposites. Tensile strength, yield strength, and elongation at break of the rigid PVC/MMT nanocomposites were improved simultaneously with adding 1–3 wt % Na+‐MMT or O‐MMT with respect to that of pristine PVC. However, the addition of Na+‐MMT or O‐MMT should be kept as not more than 3 wt % to optimize the mechanical properties and the processing stability of the rigid PVC/MMT nanocomposites. SEM micrographs of the fractured surfaces of the rigid PVC/Na+‐MMT and PVC/O‐MMT nanocomposites both before and after tensile tests were also illustrated and compared. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2145–2154, 2006  相似文献   

17.
The results of thermal, mechanical, and conductivity studies of polymer composites prepared by polymerization of acetylene in low-density polyethylene (LDPE) films impregnated with a Ziegler–Natta catalyst are presented and discussed. The enthalpy of melting of the LDPE component decreases as the amount of polyacetylene (CH)x grown in the matrix increases and is rationalized as being due to entanglement effects, although grafting cannot be unequivocally ruled out. Composites prepared well below the melting point of the LDPE matrix possess enhanced tensile moduli and tensile strengths at break, compared with pristine LDPE; this suggests reinforcement of the LDPE amorphous regions by the (CH)x chains. Measurements of electrical conductivity as a function of (CH)x content for a series of iodine-doped composites reveal an apparent percolation threshold at ca. 3 wt % (CH)x.  相似文献   

18.
Sepiolite (SEP) nanofibers have been modified by grafting with poly(pentaerythritol diphosphonate dichloride‐hexamethylendiamine) (PSPHD) and compounded with low density polyethylene (LDPE) to form a nanocomposite. The various modified SEPs were characterized by X‐ray photoelectron spectroscopy, Fourier transform infrared, transmission electron microscopy (TEM), and thermogravimetric analysis. The Fourier transform infrared and X‐ray photoelectron spectroscopy tests show that covalent bonding exists between SEP fiber and modifiers. The nanoscale size and morphologies of SEP fiber and modified SEP nanofibers can be observed clearly by TEM. The thermogravimetric analysis results reveal that the multi‐step thermal degradation process of SEP fiber is changed by grafting modification. The various LDPE/SEP nanocomposites were characterized by scanning electron micrograph, TEM, dynamic mechanical analysis, and tensile test. The results suggest that a good interfacial modification effect has been obtained between PSPHD‐SEP and LDPE matrix. A particular improvement in tensile strength is reflected in tensile tests. Dynamic mechanical analysis shows that the storage moduli (E') of PSPHD‐SEP/LDPE nanocomposites are much higher than that of neat LDPE and a‐SEP/LDPE systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Polyurethane acrylate (PUA)/clay nanocomposites were prepared by UV‐curing from a series of styrene‐based polymerically‐modified clays and PUA resin. Effect of the chemical structure of the polymeric surfactants on the morphology and tensile properties of nanocomposites has been explored. X‐ray diffraction (XRD) and transmission electron microscopy (TEM) experimental results indicated that surfactants having hydroxyl or amino groups show better dispersion and some of the clay platelets were fully exfoliated. However, the composites formed from pristine clay and other polymerically‐modified clays without hydroxyl or amino groups typically contained both tactoids and intercalated structure. The mechanical properties of PUA composites were greatly improved where the organoclays dispersed well. Thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC) were carried out to examine the thermal properties of the composites. The results showed that the loading of polymerically‐modified clays do not effect the thermal stability, but increased the Tgs of PUA/clay composites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Impact‐modified polypropylene (PP)/vermiculite (VMT) nanocomposites toughened with maleated styrene–ethylene butylene–styrene (SEBS‐g‐MA) were compounded in a twin‐screw extruder and injection‐molded. VMT was treated with maleic anhydride, which acted both as a compatibilizer for the polymeric matrices and as a swelling agent for VMT in the nanocomposites. The effects of the impact modifier on the morphology and the impact, static, and dynamic mechanical properties of the PP/VMT nanocomposites were investigated. Transmission electron microscopy revealed that an exfoliated VMT silicate layer structure was formed in ternary (PP–SEBS‐g‐MA)/VMT nanocomposites. Tensile tests showed that the styrene–ethylene butylene–styrene additions improved the tensile ductility of the (PP–SEBS‐g‐MA)/VMT ternary nanocomposites at the expense of their tensile stiffness and strength. Moreover, Izod impact measurements indicated that the SEBS‐g‐MA addition led to a significant improvement in the impact strength of the nanocomposites. The SEBS‐g‐MA elastomer was found to be very effective at converting brittle PP/VMT organoclay composites into tough nanocomposites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2332–2341, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号