首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sesamin was employed as a chiral dopant for preparing cholesteric liquid crystals with right‐handed helical architecture. Helical twisting power of sesamin is to be 13.4 μm?1. Electrochemical polymerizations were carried out with sesamin‐induced cholesteric liquid crystal electrolyte solution for obtaining conjugated polymer films with helical structure. The film was transcribed the helical order from the liquid crystal electrolyte solution with helical structure produced by sesamin during the polymerization process. The helical axes of the macromolecular superstructure of the polymer films were oriented in a magnetic field of 4.5 T. This results demonstrated liquid crystal magneto‐electrochemical polymerization with helical structure induced by sesamin as a natural chiral compound. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1894–1899  相似文献   

2.
A cholesteryl derived monomer was synthesized according to a conventional synthetic route; it exhibits a cholesteric phase above 129°C, and shows a red colour due to selective reflection in the cholesteric phase. Photopolymerization of the monomer was carried out at 135°C in the cholesteric phase. The helical structure of the cholesteric phase of the monomer was frozen by photopolymerization. A peak based on the selective reflection of the cholesteric phase was detected at 615 nm in the transmittance UV-Vis spectrum. Mixtures of the monomer with a binaphthyl derivative were prepared to control the selective reflection wavelength; they all also exhibited a cholesteric phase. The selective reflection wavelength of the mixture was dependent upon the ratio of the binaphthyl derivative in the mixture. This wavelength became shorter with increasing ratio of the binaphthyl derivative. The polymer films obtained by photopolymerization displayed almost the same selective reflection wavelength as the corresponding mixtures before photopolymerization. The selective reflection wavelength of the polymer films did not change up to about 250°C.  相似文献   

3.
A cholesteryl derived monomer was synthesized according to a conventional synthetic route; it exhibits a cholesteric phase above 129°C, and shows a red colour due to selective reflection in the cholesteric phase. Photopolymerization of the monomer was carried out at 135°C in the cholesteric phase. The helical structure of the cholesteric phase of the monomer was frozen by photopolymerization. A peak based on the selective reflection of the cholesteric phase was detected at 615 nm in the transmittance UV-Vis spectrum. Mixtures of the monomer with a binaphthyl derivative were prepared to control the selective reflection wavelength; they all also exhibited a cholesteric phase. The selective reflection wavelength of the mixture was dependent upon the ratio of the binaphthyl derivative in the mixture. This wavelength became shorter with increasing ratio of the binaphthyl derivative. The polymer films obtained by photopolymerization displayed almost the same selective reflection wavelength as the corresponding mixtures before photopolymerization. The selective reflection wavelength of the polymer films did not change up to about 250°C.  相似文献   

4.
A structured polymer was synthesized by surface initiated photopolymerization in the presence of a cholesteric liquid crystal (CLC). The templated helical polymer (traversing 2/3 the cell thickness) was backfilled with an opposite handedness, photoresponsive CLC mixture yielding a photo-induced, large contrast, hyper-reflective (R > 99%) CLC film.  相似文献   

5.
A structured broad‐band photonic film is fabricated by a novel method using multiple gradient UV‐induced polymerization in the presence of cholesteric liquid crystals (CLCs). Here, imprinting and broadening of the reflection band of chiral nematic mesophase cells are achieved via controlled UV polymerization. The intensity gradient of UV light is modified by the distance between UV lamp and sample cell, which affects the polymerization rate and leads to the formation of imprinted helical constructions with different pitches. In this study, a comparison of new design process with traditional UV polymerization process is carried out. After seven cycles of gradient UV polymerization, the imprinted photonic construction exhibited a broadened reflection band and Bragg reflection, even for isotropic materials. Because of this, the reflection bandwidth showed a 70% improvement. Additionally, two stacked imprinted cells with different pitches can reflect incident light with a bandwidth over the visible wavelength range of 480–680 nm. A broad‐band photonic polymer film can be imprinted using multiple gradient UV photopolymerization in the presence of CLCs. Forming a UV intensity gradient and controlling the rate of photopolymerization are key factors in broadening the reflection band. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 1427–1434  相似文献   

6.
A new type of polymer–liquid crystal composite with photovariable dichroism and birefringence is described. Porous stretched polyethylene films were used as polymer matrices. To induce a cholesteric phase in a commercial nematic host, a chiral photochromic dopant based on sorbide and cinnamic acid capable of E–Z isomerization under UV irradiation was used. A merocianine‐type substance was selected as a dichroic dye. Introduction of a dye‐doped cholesteric mixture with a helical pitch higher than ~300 nm to polymer film led to an almost complete transition from a cholesteric to an oriented nematic phase, as well as to an increase in birefringence and the appearance of dichroism. Decrease of the helical pitch by increasing in the chiral dopant concentration in the liquid crystal–polymer composite results in a reduction of the dichroism values. UV irradiation of polymer composite leading to an isomerization of the chiral dopant and helix untwisting induces a noticeable gradual growth of dichroism and birefringence. These new composites can be considered as promising materials for optical applications.  相似文献   

7.
Abstract

After unwinding a cholesteric solution of a mesomorphic polymer by shear, we investigate the evolution of the refractive index. Two mechanisms with different time constants are observed, one corresponding to the cholesteric rewinding, the other to the reorientation of the cholesteric axes.  相似文献   

8.
Polymer‐stabilized cholesteric liquid crystal (PSCLC) films with broadband reflection based on two‐step photopolymerization are fabricated. Owing to the helical twisting power (HTP) value of the chiral dopant (CD) decreasing with increasing temperature, PSCLC films with broadband reflection are obtained by two‐step polymerization anchoring helical pitch of different length at two different temperature points. The effect of monomer composition on the PSCLC reflection properties before and after polymerization was studied. The results show that the free‐radical monomers with appropriate concentration and cationic monomers with sufficient concentration are vital for the formation of PSCLC films with broadband reflection. In addition, the experiments show that the increase in the functionality and rigidity of the cationic monomer has a positive effect on the broadening of the reflection band. This study can provide guidance and reference for the selection of monomer species and concentration in PSCLC preparation. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1126–1132  相似文献   

9.
郭金宝  魏杰 《高分子科学》2013,31(4):630-640
In this study, a novel H-bonded cholesteric polymer film responding to temperature and pH by changing the reflection color was fabricated. The H-bonded cholesteric polymer film was achieved by UV-photopolymerizing a cholesteric liquid crystal (Ch-LC) monomers mixture containing a photopolymerizable chiral H-bonded assembly (PCHA). The cholesteric polymer film based on PCHA can be thermally switched to reflect red color from the initial green/yellow color as temperature is increased, which is due to a change in helical pitch induced by the weakening of H-bonded interaction in the polymer film. Additionally, the selective reflection band (SRB) of the cholesteric polymer film in solution with pH > 7 showed an obvious red shift with increasing pH values. While the SRB of the cholesteric polymer film in solutions with pH = 7 and pH < 7 hardly changed. This pH sensitivity in solutions with pH > 7 could be explained by the breakage of H-bonds in the cholesteric polymer film and the structure changes induced by―OH and―K + ions in the alkaline solution. In contrast, it couldn’t happen in the neutral and acidic solutions. The cholesteric polymer film in this study can be used as optical/photonic papers, optical sensors and LCs displays, etc.  相似文献   

10.
Stereoregular cis‐transoidal poly(phenylacetylene) bearing a phosphonic acid monoethyl ester as the pendant group (poly‐ 1 ‐H) was found to form a preferred‐handed helix upon complexation with various optically active pyrrolidines and piperazines in dilute dimethyl sulfoxide and water, and the complexes exhibited characteristic induced circular dichroisms (ICDs) in the UV‐vis region of the polymer backbone. The Cotton effect signs in water reflect the absolute configuration of the pyrrolidines. The sodium salt of poly‐ 1 ‐H (poly‐ 1 ‐Na) and poly‐ 1 ‐H in the presence of optically active amines formed lyotropic nematic and cholesteric liquid crystalline phases in concentrated water solutions, respectively, indicating the rigid‐rod characteristic of the polymer main chain regardless of the lack of a single‐handed helix, as evidenced by the long persistence length of about 18 nm before and after the preferred‐handed helicity induction in the polymer. X‐ray diffraction of the oriented films of the nematic and cholesteric liquid crystalline polymers exhibited almost the same diffraction pattern, suggesting that both polymers have the same helical structure; dynamically racemic and one‐handed helices, respectively. On the basis of the X‐ray analysis, a possible helical structure of poly‐ 1 is proposed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1383–1390, 2010  相似文献   

11.
The effect of a two‐step free‐radical photopolymerization of an acrylate resin on the polymer properties in the presence of glass fibers is studied. It is found that a first irradiation leading to a partial conversion is effective for the fabrication of a preimpregnated glass‐fiber composite, which can be further processed and fully polymerized through a second irradiation. DMA analysis evidences the formation of a first relatively soft polymer embedding unreacted double bonds during the preirradiation. Further process allows the completion of the photopolymerization together with a reinforcement of the polymer network. This obviously affects the final mechanical properties of the photocomposite. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1440–1447  相似文献   

12.
The syntheses of derivatives of isosorbide and cinnamic acid are described. These chiral compounds are photoisomerizable. The Z-isomers could also be obtained after irradiation of these E-isomeric cinnamic derivatives. The Z-isomers were found to have a much lower helical twisting power than the E-isomers. These compounds are very suitable for use in cholesteric colour filters for liquid crystal displays. This was investigated by functionalizing the E-isomeric derivatives with two acrylate groups. The reflection wavelength of cholesteric layers made with these diacrylates can be tuned by means of UV irradiation because the pitch of the cholesteric layer increases on isomerization to the Z-isomer. Subsequent photopolymerization results in cholesteric films with excellent thermal stability.  相似文献   

13.
Abstract

We report the first observation of cholesteric blue phases in chiral anisotropic polymer networks. In two-component mixtures of a chiral and a non-chiral diacrylate, we observed typical textures of BPI, BPII and BPIII phases. By photopolymerization of these materials at constant temperature we obtained blue phase networks. After polymerization, the blue phases were stored, which enabled us to further study them without any temperature control.  相似文献   

14.
Orientation and reorientation processes that occur in nematic and cholesteric LC polymer systems under irradiation with plane-polarized light are studied. A copolyacrylate containing phenyl benzoate and azobenzene side groups is synthesized as a nematic polymer; the cholesteric mixture is prepared via doping of the nematic copolymer with the chiral dopant, the derivative of D-isosorbide. Thin layers of the azobenzene-containing photoorientant SD-1 are first used as orienting substrates for polymer liquid crystals. Thin layers of the copolymer and of the mixture are spin-coated on the substrate after irradiation of the photoorientant layer with polarized light. It is shown that after annealing phenyl benzoate and azobenzene side groups of the nematic copolymer orient strictly along the direction of orientation of surface molecules, whereas in the case of the cholesteric mixture, a partial formation of the helical structure is observed. It is demonstrated that all the systems under examination can experience the repeated cyclic reorientation of the cooperative type under irradiation and subsequent annealing of the films.  相似文献   

15.
Abstract

Networks with a helical structure containing large amounts of low mass liquid crystal molecules (gels) were produced by photopolymerization of a nematic diacrylate in the presence of low mass cholesteric mixtures. Prior to polymerization the systems selectively reflected a band of circularly polarized light. Upon polymerization, the gels obtained gave rise to two reflection peaks which were subsequently associated with polymer rich and polymer poor phases. At high network concentrations (>40 per cent w/w) one of the peaks did not appear, indicating that the behaviour of the molecules which were not chemically attached to the network was totally dominated by the network. From the gap required for the suppression of the rotation of the director, it was estimated that the molecules, which were not crosslinked, were confined in layers thinner than 85 nm. The gels were very transparent and did not give rise to excess light scattering as compared with the monomeric state. Upon application of an electric field, colour changes as well as light scattering were induced. These efffects were found to be highly dependent on the state of the polarization of the light as well as the kind of field applied. The response times were very short and they depended strongly on the structure of the network.  相似文献   

16.
After unwinding a cholesteric solution of a mesomorphic polymer by shear, we investigate the evolution of the refractive index. Two mechanisms with different time constants are observed, one corresponding to the cholesteric rewinding, the other to the reorientation of the cholesteric axes.  相似文献   

17.
Reported here is the first example of a 1,2‐dithienyldicyanoethene‐based visible‐light‐driven chiral fluorescent molecular switch that exhibits reversible trans to cis photoisomerization. The trans form in solution almost completely transforms into the cis form, accompanied by a 10‐fold decrease in its fluorescence intensity within 60 seconds when exposed to green light (520 nm). The reverse isomerization proceeds upon irradiation with blue light (405 nm). When doped into commercially available achiral liquid crystal hosts, this molecular switch efficiently induces luminescent helical superstructures, that is, a cholesteric phase. The intensity of the circularly polarized fluorescence as well as the selective reflection wavelength of the induced cholesteric phases can be reversibly tuned using visible light of two different wavelengths. Optically rewritable photonic devices using cholesteric films containing this molecular switch are described.  相似文献   

18.
A novel polymer‐dispersed liquid‐crystal film consisting of micrometer‐scale liquid‐crystal droplets in ultraviolet‐cured polymer composite matrices with cholesteric order was prepared and the influence of cure temperature on the phase separation was studied. The existence and pitch of the ethyl cyanoethyl cellulose cholesteric liquid‐crystalline phase were influenced by the existence of low molecular weight liquid crystals. The macromolecular cholesteric phase disappeared when the 4′‐n‐pentyl‐4‐cyano‐biphenyl concentration was over 40 wt %, and 4′‐n‐pentyl‐4‐cyano‐biphenyl domains were dispersed in the isotropic matrix of the polymer composite. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1334–1341, 2002  相似文献   

19.
Reported here is the first example of a 1,2‐dithienyldicyanoethene‐based visible‐light‐driven chiral fluorescent molecular switch that exhibits reversible trans to cis photoisomerization. The trans form in solution almost completely transforms into the cis form, accompanied by a 10‐fold decrease in its fluorescence intensity within 60 seconds when exposed to green light (520 nm). The reverse isomerization proceeds upon irradiation with blue light (405 nm). When doped into commercially available achiral liquid crystal hosts, this molecular switch efficiently induces luminescent helical superstructures, that is, a cholesteric phase. The intensity of the circularly polarized fluorescence as well as the selective reflection wavelength of the induced cholesteric phases can be reversibly tuned using visible light of two different wavelengths. Optically rewritable photonic devices using cholesteric films containing this molecular switch are described.  相似文献   

20.
The photoluminescence (PL) of CdSe quantum dots (QDs) that form stable nanocomposites with polymer liquid crystals (LCs) as smectic C hydrogen‐bonded homopolymers from a family of poly[4‐(n‐acryloyloxyalkyloxy)benzoic acids] is reported. The matrix that results from the combination of these units with methoxyphenyl benzoate and cholesterol‐containing units has a cholesteric structure. The exciton PL band of QDs in the smectic matrix is redshifted with respect to QDs in solution, whereas a blueshift is observed with the cholesteric matrix. The PL lifetimes and quantum yield in cholesteric nanocomposites are higher than those in smectic ones. This is interpreted in terms of a higher order of the smectic matrix in comparison to the cholesteric one. CdSe QDs in the ordered smectic matrix demonstrate a splitting of the exciton PL band and an enhancement of the photoinduced differential transmission. These results reveal the effects of the structure of polymer LC matrices on the optical properties of embedded QDs, which offer new possibilities for photonic applications of QD–LC polymer nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号