首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Cancer remains the leading cause of death worldwide despite advances in treatment options for patients. As such, safe and effective therapeutics are required. Short peptides provide advantages to be used in cancer management due to their unique properties, amazing versatility, and progress in biotechnology to overcome peptide limitations. Several appealing peptide-based therapeutic strategies have been developed. Here, we provide an overview of peptide conjugates, the better equivalents of antibody-drug conjugates, as the next generation of drugs for required precise targeting, enhanced cellular permeability, improved drug selectivity, and reduced toxicity for the efficient treatment of cancers. We discuss the basic components of drug conjugates and their release action, including the release of cytotoxins from the linker. We also present peptide-drug conjugates under different stages of clinical development as well as regulatory and other challenges.  相似文献   

2.
Herein, the design and synthesis of peptide-drug conjugates (PDCs) including different variants of the cell-penetrating peptide sC18 is presented. We first generated a series of novel sequence mutants of sC18 having either amino acid deletions and/or substitutions, and then tested their biological activity. The effects of histidine substituents were found to be not meaningful for sC18 uptake and cell selectivity. Moreover, building a nearly perfect amphipathic structure within a shortened sC18 derivative provided a peptide that was highly membrane-active, but also too cytotoxic. As a result, the most promising analog was sC18ΔE, which stands out due to its higher uptake efficacy compared to parent sC18. In the last set of experiments, we let the peptides react with the cytotoxic drug doxorubicin by Thiol–Michael addition to form novel PDCs. Our results indicate that sC18ΔE could be a more efficient drug carrier than parent sC18 for biomedical applications. However, cellular uptake using endocytosis and resulting entrapment of cargo inside vesicles is still a major critical step to overcome in CPP-containing peptide-drug development.  相似文献   

3.
Targeted therapy based on protein–drug conjugates has attracted significant attention owing to its high efficacy and low side effects. However, efficient and stable drug conjugation to a protein binder remains a challenge. Herein, a chemoenzymatic method to generate highly stable and homogenous drug conjugates with high efficiency is presented. The approach comprises the insertion of the CaaX sequence at the C‐terminal end of the protein binder, prenylation using farnesyltransferase, and drug conjugation through an oxime ligation reaction. MMAF and an EGFR‐specific repebody are used as the antitumor agent and protein binder, respectively. The method enables the precisely controlled synthesis of repebody–drug conjugates with high yield and homogeneity. The utility of this approach is illustrated by the notable stability of the repebody–drug conjugates in human plasma, negligible off‐target effects, and a remarkable antitumor activity in vivo. The present method can be widely used for generating highly homogeneous and stable PDCs for targeted therapy.  相似文献   

4.
The large number of emerging antibody-drug conjugates (ADCs) for cancer therapy has resulted in a significant market ‘boom’, garnering worldwide attention. Despite ADCs presenting huge challenges to researchers, particularly regarding the identification of a suitable combination of antibody, linker, and payload, as of September 2021, 11 ADCs have been granted FDA approval, with eight of these approved since 2017 alone. Optimism for this therapeutic approach is clear, despite the COVID-19 pandemic, 2020 was a landmark year for deals and partnerships in the ADC arena, suggesting that there remains significant interest from Big Pharma. Herein we review the enthusiasm for ADCs by focusing on the features of those approved by the FDA, and offer some thoughts as to where the field is headed.  相似文献   

5.
The synthesis and physico‐chemical characterisation of biodegradable multiblock polymer drug carriers based on poly(ethylene glycol) (PEG) are described. The blocks of PEG ( = 2 000) are interconnected by an enzymatically degradable tripeptide derivative consisting of one Lys and two Glu residues. An anticancer drug, doxorubicin (Dox), was attached to the polymer carrier by a Gly‐Phe‐Leu‐Gly tetrapeptide spacer, which is also susceptible to degradation by lysosomal enzymes. A targeting polyclonal antibody was covalently linked to the polymer‐Dox conjugate by the aminolytic reaction of reactive sulfosuccinimidyl ester groups of the polymer with the protein. The resulting antibody‐polymer‐drug conjugates were characterised by SEC, UV/VIS spectrophotometry and amino acid analysis. Although the studied polymers show only a moderate antiproliferative activity against concanavalin A‐stimulated murine splenocytes and a murine T‐cell EL 4 lymphoma in vitro, they exhibited significant antitumour efficiency against murine T‐cell EL 4 lymphoma in vivo.

  相似文献   


6.
Traditional cancer chemotherapy is often accompanied by systemic toxicity to the patient. Monoclonal antibodies against antigens on cancer cells offer an alternative tumor‐selective treatment approach. However, most monoclonal antibodies are not sufficiently potent to be therapeutically active on their own. Antibody–drug conjugates (ADCs) use antibodies to deliver a potent cytotoxic compound selectively to tumor cells, thus improving the therapeutic index of chemotherapeutic agents. The recent approval of two ADCs, brentuximab vedotin and ado‐trastuzumab emtansine, for cancer treatment has spurred tremendous research interest in this field. This Review touches upon the early efforts in the field, and describes how the lessons learned from the first‐generation ADCs have led to improvements in every aspect of this technology, i.e., the antibody, the cytotoxic compound, and the linker connecting them, leading to the current successes. The design of ADCs currently in clinical development, and results from mechanistic studies and preclinical and clinical evaluation are discussed. Emerging technologies that seek to further advance this exciting area of research are also discussed.  相似文献   

7.
8.
The structural preciseness of dendrimers makes them perfect drug delivery carriers, particularly in the form of dendrimer–drug conjugates. Current dendrimer–drug conjugates are synthesized by anchoring drug and functional moieties onto the dendrimer peripheral surface. However, functional groups exhibiting the same reactivity make it impossible to precisely control the number and the position of the functional groups and drug molecules anchored to the dendrimer surface. This structural heterogeneity causes variable pharmacokinetics, preventing such conjugates to be translational. Furthermore, the highly hydrophobic drug molecules anchored on the dendrimer periphery can interact with blood components and alter the pharmacokinetic behavior. To address these problems, we herein report molecularly precise dendrimer–drug conjugates with drug moieties buried inside the dendrimers. Surprisingly, the drug release rates of these conjugates were tailorable by the dendrimer generation, surface chemistry, and acidity.  相似文献   

9.
RGD-cryptophycin and isoDGR-cryptophycin conjugates were synthetized by combining peptidomimetic integrin ligands and cryptophycin, a highly potent tubulin-binding antimitotic agent across lysosomally cleavable Val-Ala or uncleavable linkers. The conjugates were able to effectively inhibit binding of biotinylated vitronectin to integrin αvβ3, showing a binding affinity in the same range as that of the free ligands. The antiproliferative activity of the novel conjugates was evaluated on human melanoma cells M21 and M21-L with different expression levels of integrin αvβ3, showing nanomolar potency of all four compounds against both cell lines. Conjugates containing uncleavable linker show reduced activity compared to the corresponding cleavable conjugates, indicating efficient intracellular drug release in the case of cryptophycin-based SMDCs. However, no significant correlation between the in vitro biological activity of the conjugates and the integrin αvβ3 expression level was observed, which is presumably due to a non-integrin-mediated uptake. This reveals the complexity of effective and selective αvβ3 integrin-mediated drug delivery.  相似文献   

10.
With a number of antibody–drug conjugates (ADCs) approved for clinical use as targeted cancer therapies and numerous candidates in clinical trials, the field of ADCs is emerging as one of the frontiers in biomedical research, particularly in the area of cancer treatment. Chemists, biologists and clinicians, among other scientists, are partnering their expertise to improve their design, synthesis, efficacy and precision as they strive to advance this paradigm of personalized and targeted medicine to treat cancer patients more effectively and to expand its scope to other indications. Just as Alexander Fleming's penicillin, and the myriad other bioactive natural products that followed its discovery and success in the clinic, ignited a revolution in medicine after the Second World War, so did calicheamicin γ1I, and other highly potent naturally occurring antitumor agents, play a pivotal role in enabling the advent of this new paradigm of “biological‐small molecule hybrid” medical intervention. Today there are four clinically approved drugs from the ADC paradigm, Mylotarg, Adcetris, Kadcyla and Besponsa, in order of approval, the first and the last of which carry the same calicheamicin γ1I‐derived payload. Covering oncological applications, and after a brief history of the emergence of the field of antibody–drug conjugates triggered more than a century ago by Paul Ehrlich's “magic bullet” concept, this Review is primarily focusing on the chemical synthesis aspects of the ADCs multidisciplinary research enterprise.  相似文献   

11.
Platinum‐based chemotherapy has been widely used to treat cancers including ovarian cancer; however, it suffers from dose‐limiting toxicity. Judiciously designed drug nanocarriers can enhance the anticancer efficacy of platinum‐based chemotherapy while reducing its systemic toxicity. Herein the authors report a stable and water‐soluble unimolecular nanoparticle constructed from a hydrophilic multi‐arm star block copolymer poly(amidoamine)‐b‐poly(aspartic acid)‐b‐poly(ethylene glycol) (PAMAM‐PAsp‐PEG) conjugated with both cRGD (cyclo(Arg‐Gly‐Asp‐D‐Phe‐Cys) peptide and cyanine5 (Cy5) fluorescent dye as a platinum‐based drug nanocarrier for targeted ovarian cancer therapy. Carboplatin is complexed to the poly(aspartic acid) inner shell via pH‐responsive ion–dipole interactions between carboplatin and the carboxylate groups of poly(aspartic acid). Based on flow cytometry and confocal laser scanning microscopy analyses, cRGD‐conjugated unimolecular nanoparticles exhibit much higher cellular uptake by ovarian cancer cells overexpressing αvβ3 integrin than nontargeted (i.e., cRGD‐lacking) ones. Carboplatin‐complexed cRGD‐conjugated nanoparticles also exhibit higher cytotoxicity than nontargeted nanoparticles as well as free carboplatin, while empty unimolecular nanoparticles show no cytotoxicity. These results indicate that stable unimolecular nanoparticles made of individual hydrophilic multi‐arm star block copolymer molecules conjugate with tumor‐targeting ligands and dyes (i.e., PAMAM‐PAsp‐PEG‐cRGD/Cy5) are promising nanocarriers for platinum‐based anticancer drugs for targeted cancer therapy.

  相似文献   


12.
Herein we report a convenient chemical approach to reversibly modulate protein (RNase A) function and develop a protein that is responsive to reactive oxygen species (ROS) for targeted cancer therapy. The conjugation of RNase A with 4‐nitrophenyl 4‐(4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl) benzyl carbonate (NBC) blocks protein lysine and temporarily deactivates the protein. However, the treatment of RNase A–NBC with hydrogen peroxide (one major intracellular ROS) efficiently cleaves the NBC conjugation and restores the RNase A activity. Thus, RNase A–NBC can be reactivated inside tumor cells by high levels of intracellular ROS, thereby restoring the cytotoxicity of RNase A for cancer therapy. Due to higher ROS levels inside tumor cells compared to healthy cells, and the resulting different levels of RNase A–NBC reactivation, RNase A–NBC shows a significant specific cytotoxicity against tumor cells.  相似文献   

13.
Biomimetic nanoparticles have recently emerged as a novel drug delivery platform to improve drug biocompatibility and specificity at the desired disease site, especially the tumour microenvironment. Conventional nanoparticles often encounter rapid clearance by the immune system and have poor drug-targeting effects. The rapid development of nanotechnology provides an opportunity to integrate different types of biomaterials onto the surface of nanoparticles, which enables them to mimic the natural biological features and functions of the cells. This mimicry strategy favours the escape of biomimetic nanoparticles from clearance by the immune system and reduces potential toxic side effects. Despite the rapid development in this field, not much has progressed to the clinical stage. Thus, there is an urgent need to develop biomimetic-based nanomedicine to produce a highly specific and effective drug delivery system, especially for malignant tumours, which can be used for clinical purposes. Here, the recent developments for various types of biomimetic nanoparticles are discussed, along with their applications for cancer imaging and treatments.  相似文献   

14.
The effective delivery of cytotoxic agents to tumor cells is a key challenge in anticancer therapy. Multivalent integrinspecific ligands are considered a promising tool to increase the binding affinity, selectivity, and internalization efficiency of small-molecule drug conjugates. Herein, we report the synthesis and biological evaluation of a multimeric conjugate containing the high-affinity integrin αvβ3 binding ligand RAFT-c(RGDfK)4, a lysosomally cleavable Val-Cit linker, and cryptophycin-55 glycinate, a potent inhibitor of tubulin polymerization. In vitro cytotoxicity assays verified that the multimeric RGD-cryptophycin conjugate displays improved potency compared to the monomeric analogue in integrin αvβ3 overexpressing tumor cell lines, while significantly reduced activity was observed in the integrin-negative cell line.  相似文献   

15.
The targeted delivery of potent cytotoxic agents has emerged as a promising strategy for the treatment of cancer and other serious conditions. Traditionally, antibodies against markers of disease have been used as drug‐delivery vehicles. More recently, lower molecular weight ligands have been proposed for the generation of a novel class of targeted cytotoxics with improved properties. Advances in this field crucially rely on efficient methods for the identification and optimization of organic molecules capable of high‐affinity binding and selective recognition of target proteins. The advent of DNA‐encoded chemical libraries allows the construction and screening of compound collections of unprecedented size. In this Review, we survey developments in the field of small ligand‐based targeted cytotoxics and show how innovative library technologies will help develop the drugs of the future.  相似文献   

16.
核酸适配体是利用体外筛选技术,即指数富集的配体系统进化技术(SELEX),从核酸分子文库中得到的寡核苷酸片段。其与靶标物有很高的特异性和亲和力,将适配体作为识别单元的生物传感研究以及适配体偶联成像试剂的生物体内外成像研究在临床诊断中有很大的应用前景,此外,适配体靶向癌细胞或组织的治疗方法相比传统化学治疗副作用更小,在临床上也有极大的应用前景。本文综述了适配体目前在癌症诊断和靶向治疗两个方面的研究进展,并分析现阶段存在的问题以及面临的挑战。  相似文献   

17.
Colorectal cancer (CRC) is a usual digestive tract malignancy and the third main cause of cancer death around the world, with a high occurrence rate and mortality rate. Conventional therapies for CRC have certain side effects and restrictions. However, the exciting thing is that with the rapid development of nanotechnology, nanoparticles have gradually become more valuable drug delivery systems than traditional therapies because of their capacity to control drug release and target CRC. This also promotes the application of nano-drug targeted delivery systems in the therapy of CRC. Moreover, to make nanoparticles have a better colon targeting effect, many approaches have been used, including nanoparticles targeting CRC and in response to environmental signals. In this review, we focus on various targeting mechanisms of CRC-targeted nanoparticles and their latest research progress in the last three years, hoping to give researchers some inspiration on the design of CRC-targeted nanoparticles.  相似文献   

18.
Malignant tumors remain a major health burden throughout the world and effective therapeutic strategies are urgently needed. Herein, we report the synthesis of upconverting nanoparticles with a mesoporous TiO2 (mTiO2) shell for near‐infrared (NIR)‐triggered drug delivery and synergistic targeted cancer therapy. The NaGdF4:Yb,Tm could convert NIR light to UV light, which activated the mTiO2 to produce reactive oxygen species for photodynamic therapy (PDT). Due to the large surface area and porous structure, the mTiO2 shell endowed the nanoplatform with another functionality of anticancer drug loading for chemotherapy. The hyaluronic acid modified on the surface not only promised controlled drug release but also conferred targeted ability of the system toward cluster determinant 44 overexpressed cancer cells. More importantly, cytotoxicity experiments demonstrated that combined therapy mediated the highest rate of death of breast carcinoma cells compared with that of single chemotherapy or PDT.  相似文献   

19.
In spite of great development in nanoparticle-based drug delivery systems(DDSs)for improved therapeutic efficacy,it remains challenging for effective delivery of chemotherapeutic drugs to targeted tumor cells.In this work,we report a triangle DNA origami as targeted DDS for cancer therapy.DNA origami shows excellent biocompatibility and stability in cell culture medium for 24 h.In addition,the DNA origami structures conjugated with multivalent aptamers enable for efficient delivery of anticancer drug doxorubicin(Dox)into targeted cancer cell due to their targeting function,reducing side effects associated with nonspecific distribution.Moreover,we also demonstrated that the multivalent aptamer-modified DNA origami loading Dox exhibits prominent therapeutic efficacy in vitro.Accordingly,this work provides a good paradigm for the development of DNA origami nanostructure-based targeted DDS for cancer therapy.  相似文献   

20.
Cancer is the second leading cause of death worldwide; therefore, there is an urgent need to find safe and effective therapies. Triple-negative breast cancer (TNBC) is diagnosed in ca. 15–20% of BC and is extremely aggressive resulting in reduced survival rate, which is mainly due to the low therapeutic efficacy of available treatments. Photodynamic therapy (PDT) is an interesting therapeutic approach in the treatment of cancer; the photosensitizers with good absorption in the therapeutic window, combined with their specific targeting of cancer cells, have received particular interest. This review aims to revisit the latest developments on chlorin-based photoactive molecules for targeted therapy in TNBC. Photodynamic therapy, alone or combined with other therapies (such as chemotherapy or photothermal therapy), has potential to be a safe and a promising approach against TNBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号