首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(ethylene oxide) (PEO) is known for facilitating the electrospinning of biopolymer solutions, which are otherwise not electrospinnable. The objective of this study was to improve the understanding of the positive effects of PEO on the electrospinning of whey protein isolate (WPI) solutions under different pH conditions. Alterations in protein secondary structure and polymer solution properties (viscosity, conductivity, and dynamic surface tension), as induced by pH changes, significantly affected the electrospinning behavior of WPI/PEO (10% w/w: 0.4% w/w PEO) solutions. Acidic solutions resulted in smooth fibers (707 ± 105 nm) while neutral solutions produced spheres (2.0 ± 1.0 μm) linked with ultrafine fibers (138 ± 32 nm). In comparison, alkaline solutions produced fibers (191 ± 36 nm) that were embedded with spindle‐like beads (1.0 ± 0.5 μm). 13C NMR and FTIR spectroscopies showed that the increase in random coil and α‐helix secondary structures in WPI were the main contributors to the formation of bead‐less electrospun fibers. The electrospinning‐enabling properties of PEO on aqueous WPI solutions were attributed to physical chain entanglement between the two polymers, rather than specific polymer–polymer interactions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

2.
It is difficult to produce rubbery polymer nanofibers, that is, polybutadiene, by the method of electrospinning, since during electrospinning rubbery polymer fibers join and entangles due to their low Tg. For this reason, it is not easy to achieve the fiber form out of these polymers. Homogeneously electrospun carbon nanotubes (CNT)‐filled polybutadiene (PBu) and poly(ethylene oxide) (PEO) composite elastomeric fibers exhibit distinctive physical features such as uniform fiber diameter and distribution with significant improvements in thermomechanical properties. Controlled hydrophilicity/hydrophobicity with the components allows to generate homogenous, thermally stable and stretchable bio‐composite scaffold, and fibrous antibacterial membrane scaffolds out of PBu/PEO/CNT composite. We have combined the exciting properties of PEO with high pore density with the rubber elasticity of PBu via dissolving them in a dichloromethane/ethyl acetate organic solvent, and subsequently producing electrospun woven fibers with different PBu/PEO ratios. Frequency‐dependent thermomechanical characterization via dynamic mechanical analysis reveals pronounced changes in the onset and extent of melting, as well as the storage and loss modulus values at the onset of melting, in particular when small amounts (1.25% by wt%) of CNTs are present. The characteristic bands were detected for the PBu/PEO and PBu/PEO/CNT samples by means of Raman and Fourier‐transform infrared spectroscopy. CNT addition increases the hydrophobicity via the increase in roughness as attained by atomic force microscopy.  相似文献   

3.
Triblock copolymers made up of poly(ethylene oxide) (PEO) and polylactide (PLA) were synthesized and converted to fibers by the electrospinning process. A two‐step in situ‐synthesis in bulk was applied to extend PLA‐PEO‐PLA triblock copolymers with relatively short block length and low molecular weight in order to obtain electrospinnable materials. DL‐lactide was polymerized to the hydroxyl chain ends of PEO via the stannous octoate route. Hexamethylene diisocyanate (HDI) was added as chain extender in the second step, leading to poly(ether‐ester‐urethane) multiblock copolymers. The materials were electrospun from solutions in chloroform. Different concentrations and voltages were analyzed. The ether and ester blocks were varied in their block length and their effects on the fiber morphology was studied. Variations in the electrical conductivity of the chloroform solutions were investigated by adding triethyl benzyl ammonium chloride (TEBAC) in different amounts. Finally, with high quality electrospun PLA‐PEO‐PEO triblock copolymer fibers mechanical cutting was possible. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
In this article, we report on the production by electrospinning of P3HT/PEO, P3HT/PEO/GO, and P3HT/PEO/rGO nanofibers in which the filler is homogeneously dispersed and parallel oriented along the fibers axis. The effect of nanofillers' presence inside nanofibers and GO reduction was studied, in order to reveal the influence of the new hierarchical structure on the electrical conductivity and mechanical properties. An in‐depth characterization of the purity and regioregularity of the starting P3HT as well as the morphology and chemical structure of GO and rGO was carried out. The morphology of the electrospun nanofibers was examined by both scanning and transmission electron microscopy. The fibrous nanocomposites are also characterized by differential scanning calorimetry to investigate their chemical structure and polymer chains arrangements. Finally, the electrical conductivity of the electrospun fibers and the elastic modulus of the single fibers are evaluated using a four‐point probe method and atomic force microscopy nanoindentation, respectively. The electrospun materials crystallinity as well as the elastic modulus increase with the addition of the nanofillers while the electrical conductivity is positively influenced by the GO reduction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.

Two series of functional polymers, α,ω‐bi[2,4‐dinitrophenyl][poly(ethylene oxide)‐b‐poly(2‐methoxystyrene)‐b‐poly(ethylene oxide)] (DNP‐PEO‐P2MS‐PEO‐DNP) and α,ω‐bi[2,4‐dinitrophenyl caproic][poly(ethylene oxide)‐b‐poly(2‐methoxystyrene)‐b‐poly(ethylene oxide)] (CDNP‐PEO‐P2MS‐PEO‐CDNP), were synthesized by anionic living polymerization. The polymers were characterized by FT‐IR, 1H‐NMR and Gel Permeation Chromatography (GPC). The molecular weight distributions for the lower molecular weight functional polymers were slightly broad (1.3–1.5). However, the molecular weight distributions for higher molecular weight polymers were narrower (1.1–1.2). Differential scanning calorimetry (DSC) studies showed thermal transitions indicative of the presence of microphases in the polymer solid state. The polymers were white powders and soluble in tetrahydrofuran. The binding affinity of DNP‐PEO‐P2MS‐PEO‐DNP ligands towards anti DNP IgE was determined by titrations with fluorescently labeled FITC‐IgE. A water soluble CDNP‐PEO‐P2MS‐PEO‐CDNP/DMEG (dimethoxyethylene glycol) complex binds and achieves steady state binding with solution IgE within a few seconds. This strongly suggests that CDNP functional polymers with improved water solubility have potential in therapeutics. Higher molecular weight (water insoluble) CDNP‐PEO‐P2MS‐PEO‐CDNP polymers were electrosprayed as fibers (500 nm) on silicon surface. Fluorescence spectroscopy clearly showed that RBL mast cells were interacting with the fibers suggesting that the cell‐surface receptors were clustered along the fiber surface. These observations suggest that the functional polymers hold promise for developing an antibody detection device.  相似文献   

6.
Summary: Electrically conducting polypyrrole‐poly(ethylene oxide) (PPy‐PEO) composite nanofibers are fabricated via a two‐step process. First, FeCl3‐containing PEO nanofibers are produced by electrospinning. Second, the PEO‐FeCl3 electrospun fibers are exposed to pyrrole vapor for the synthesis of polypyrrole. The vapor phase polymerization occurs through the diffusion of pyrrole monomer into the nanofibers. The collected non‐woven fiber mat is composed of 96 ± 30 nm diameter PPy‐PEO nanofibers. FT‐IR, XPS, and conductivity measurements confirm polypyrrole synthesis in the nanofiber.

An SEM image of the PPy‐PEO composite nanofibers. The scale bar in the image is 500 nm.  相似文献   


7.
Fairly uniform chitosan (CS)/poly(ethylene oxide) (PEO) ultrafine fibers containing silver nanoparticles (AgNPs) were successfully prepared by electrospinning of CS/PEO solutions containing Ag/CS colloids by means of in situ chemical reduction of Ag ions. The presence of AgNPs in the electrospun ultrafine fibers was confirmed by X-ray diffraction patterns. The AgNPs were evenly distributed in CS/PEO ultrafine fibers with the size less than 5 nm observed under a transmission electron microscope. X-ray photoelectron spectroscopy suggested that the existence of Ag―O bond in the composite ultrafine fibers led to the tight combination between Ag and CS. Evaluation of antimicrobial activities of the electrospun Ag/CS/PEO fibrous membranes against Escherichia coli showed that the AgNPs in the ultrafine fibers significantly enhanced the inactivation of bacteria.  相似文献   

8.
We evaluate the feasibility of electrospinning oil‐in‐water type emulsions. The emulsions had an aqueous solution of polyethylene oxide (PEO) as the continuous phase, and either mineral oil or a polystyrene (PS) in toluene solution as the drop phase. The Taylor cones and electrified liquid jets were stable even when the emulsion drops were as large as a few‐ten microns in diameter. The resulting electrospun PEO fibers incorporated the dispersed phase of the emulsion in the form of drops (in case of mineral oil), or in the form of solid particles (in case of PS). Mineral oil drops appear to be completely encapsulated in the PEO fibers, whereas the PS particles are either incompletely encapsulated, or covered by only a very thin layer of PEO. Calculations show that in both cases, the initially large emulsion drops are broken during the electrospinning process. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
于建 《高分子科学》2009,(3):387-392
Biopolymer chitosan was used to modify the mechanical properties of soluble eggshell membrane protein(SEP) films.The SEP/chitosan blend films were prepared by solution casting from 10%aqueous acetic acid.Tensile strength and elongation at break of the blend films increased with increasing amount of chitosan.Microphase separation was observed by field emission scanning electron microscopy,although interaction between the two components was revealed by FTIR.The biocompatibility of SEP/chitosan blend films ...  相似文献   

10.
We report a facile way of preparing microfluidic channels filled with electrospun functional fibers. Patterned elastic molds were in tight contact with electrospun fiber mats without any leak of the analyte solution. As an example of the simple devices, we demonstrated a microfluidic protein chip selectively purifying histidine‐tagged proteins. Highly mesoporous nitrilotriacetic acid‐functionalized polystyrene (PS‐NTA) fibers were produced by taking advantage of interpenetrating phase separation between PS and PEO during electrospinning. The specific interaction of Ni‐complexed PS‐NTA fibers with histidine enabled us to immobilize only target proteins from highly heterogeneous protein mixtures. The easy process to fabricate functionalized microchannels combined with the high production throughput from electrospinning may greatly contribute to chip‐based chromatographic and bioanalytical devices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

11.
Hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) is a modified β‐cyclodextrin (β‐CD) derivative, which is toxicologically harmless to mammals and other animals. HP‐β‐CD is electrospun from an aqueous solution by blending with a non‐toxic, biocompatible, synthetic polymer poly(ethylene oxide) (PEO). Aqueous solutions containing different HP‐β‐CD/PEO blends (50:50–80:20) with variable concentrations (4 wt%–12 wt%) were used. Scanning electron microscope was used to investigate the morphology of the fibers, and Fourier transform infrared spectroscopy analysis confirmed the presence of HP‐β‐CD in the fiber. Uniform nanofibers with an average diameter of 264, 244, and 236 nm were obtained from 8 wt% solution of 50:50, 60:40, and 70:30 HP‐β‐CD/PEO, respectively. The average diameter of the fiber was decreased with increasing of HP‐β‐CD/PEO ratio. However, a higher proportion of HP‐β‐CD in the spinning solution increased beads in the fibers. The polymer concentration had no significant effect on the fiber diameter. The most uniform fibers with the narrowest diameter distribution were obtained from the 8 wt% of 50:50 solution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Summary: Uniform core‐sheath nanofibers are prepared by electrospinning a water‐in‐oil emulsion in which the aqueous phase consists of a poly(ethylene oxide) (PEO) solution in water and the oily phase is a chloroform solution of an amphiphilic poly(ethylene glycol)‐poly(L ‐lactic acid) (PEG‐PLA) diblock copolymer. The obtained fibers are composed of a PEO core and a PEG‐PLA sheath with a sharp boundary in between. By adjusting the emulsion composition and the emulsification parameters, the overall fiber size and the relative diameters of the core and the sheath can be changed. A mechanism is proposed to explain the process of transformation from the emulsion to the core‐sheath fibers, i.e., the stretching and evaporation induced de‐emulsification. In principle, this process can be applied to other systems to prepare core‐sheath fibers in place of concentric electrospinning and it is especially suitable for fabricating composite nanofibers that contain water‐soluble drugs.

Schematic mechanism for the formation of core‐sheath composite fibers during emulsion electrospinning.  相似文献   


13.
将聚氧化乙烯(PEO)水溶液在不同的工艺条件下进行电纺,制备了PEO纤维.用SEM研究了纤维的分散形态;用DSC和XRD研究了纤维的结晶性能.电纺纤维分散形态是由浓度、电压、固化距离等因素综合作用的结果.其中,浓度是最关键的因素.降低溶液浓度,提高静电压和增加固化距离均会使纤维变细.电纺得到的纤维与原粉相比,电纺使纤维结晶度下降,理论上分析了可能的机理.  相似文献   

14.
The present study describes the harnessing of revalued cow milk (denoted as waste milk) for fabricating casein fibers (CAS) with enhanced mechanical performance and antibacterial properties by the electrospinning method. For this purpose, polyethylene oxide (PEO) was employed (10 and 20 wt%) as a binder for the appropriate electrospun CAS fibers. Different amount of tannic acid (TA) was incorporated into casein/polyethylene oxide fibers (CAS/PEO) as a crosslinker agent, bringing filaments with a diameter of ca. 2 µm. The incorporation of 4 wt% of TA promotes the fibers' reticulation, forming a stable three-dimensional network. Also, the mechanical performance of CAS/PEO fibers was improved, where the tensile strength was increased from 0.91 MPa to 1.88 MPa with 4 % of TA, while the breaking elongation was increased from 93.74 % to 274.56 %. This behavior benefits the processing of fibers by electrospinning. Furthermore, the TA addition during the electrospun of CAS/PEO fibers enhances fibers' wettability properties and thermal stability induced by the crosslinker agent. Additionally, the antibacterial activity (AA) test demonstrates that CAS fibers can inhibit the growth of Gram-positive S. aureus and Gram-negative E. coli after 0.5 h, 1.5 h, 3 h, and 24 h of contact, which is generated by the TA addition. Our results suggest that the electrospun fabrication of CAS/PEO fibers with TA as a crosslinker agent represents an innovative harnessing of waste milk to produce functional textiles with potential biological application.  相似文献   

15.
The electrospinning technique was used to spin ultra-thin fibers from several polymer/solvent systems. The diameter of the electrospun fibers ranged from 16 nm to 2 μm. The morphology of these fibers was investigated with an atomic force microscope (AFM) and an optical microscope. Polyethylene oxide) (PEO) dissolved in water or chloroform was studied in greater detail. PEO fibers spun from aqueous solution show a “beads on a string” morphology. An AFM study showed that the surface of these fibers is highly ordered. The “beads on a string” morphology can be avoided if PEO is spun from solution in chloroform; the resulting fibers show a lamellar morphology. Polyvinylalcohol (PVA) dissolved in water and cellulose acetate dissolved in acetone were additional polymer/solvent systems which were investigated. Furthermore, the electrospinning process was studied: different experimental lay-outs were tested, electrostatic fields were simulated, and voltage - current characteristics of the electrospinning process were recorded.  相似文献   

16.
Centrifugal force spinning (CFS), also known as centrifugal spinning, forcespinning, or rotary jet spinning, provides considerably higher production rates than electrospinning (ES), but the more widespread use of CFS as an alternative depends on the ability to produce fibers with robust thermal and mechanical properties. Here, we report the CFS of poly(ethylene oxide) (PEO) fibers made using a spinning dope formulated with acetonitrile (AcN) as the volatile solvent, and we describe the thermal and mechanical properties of the centrifugally-spun fibers. Even though the formation, diameter, and morphology of electrospun and centrifugally-spun PEO fibers are relatively well-studied, the article presents three crucial contributions: the pioneering use of PEO solutions in AcN as spinning dope, characterization of crystallinity and mechanical properties of the centrifugally-spun PEO fibers, and a comparison with the corresponding properties of electrospun fibers. We find that fiber formation occurrs for the chosen CFS conditions if polymer concentration exceeds the entanglement concentration, determined from the measured specific viscosity. Most significantly, the centrifugally spun PEO fibers display crystallinity, modulus, elongation-at-break, and fiber diameter that rival the properties of electrospun PEO fibers reported in the literature.  相似文献   

17.
Polydiacetylenes (PDAs), a family of conjugated polymers, are very intriguing materials in several aspects. Especially, the stimulus‐induced apparent blue‐to‐red transition of the PDAs has led to the development of a variety of PDA‐based chemosensors. In the current work, we synthesized PDA monomers bearing trimethyl amine (PCDA‐DMEDA) and incorporated them with Poly(ethylene oxide) (PEO) into electrospun fibers. For the first time, we successfully demonstrated that PDA‐based electrospun fibers can be used for the naked‐eye detection of HCl gas by simple color change (blue to red).  相似文献   

18.
Poly(o‐aminobenzyl alcohol) (POABA) was grafted with poly(ethylene oxide)s (PEOs) through the reaction of tosylated PEO with both the hydroxide and amine moieties of reduced POABA. Reduced POABA was prepared through the acid‐mediated polymerization of o‐aminobenzyl alcohol, followed by neutralization with an aqueous ammonium hydroxide solution and reduction with hydrazine. The grafted copolymers were very soluble in common polar solvents, such as chloroform, tetrahydrofuran, and dimethylformamide, and the copolymers with longer PEO side chains (number‐average molecular weight > 164) were even water‐soluble. The conductivities of the doped grafted copolymers decreased with increasing PEO side‐chain length because of the nonconducting PEO and its torsional effect on the POABA backbone. The conductivity of highly water‐soluble POABA‐g‐PEO‐350 was 0.689 × 10?3 S/cm, that is, in the semiconducting range. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4756–4764, 2004  相似文献   

19.
Biodegradable poly(L ‐lactide‐co‐ε‐caprolactone) copolymers with different L ‐lactide (LLA)/ε‐caprolactone (CL) ratios of 75/25 and 50/50 were electrospun into fine fibers. The deformation behavior of the electrospun membranes with randomly oriented structures was evaluated under uniaxial tensile loading. The electrospun membrane with a higher LLA content showed a significantly higher tensile modulus but a similar maximum stress and a lower ultimate strain in comparison with the membrane with a lower LLA content. The beaded fibers that formed in the membranes caused lower tensile properties. X‐ray diffraction and differential scanning calorimetry results suggested that the electrospun fine fibers developed highly oriented structures in CL‐unit sequences during the electrospinning process even though the concentration was only 25 wt %. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3205–3212, 2005  相似文献   

20.
Composites of electrospun poly(ethylene oxide) (PEO) fibers and silver nanoparticles (Ag NPs) were used as a soft template for coating with TiO2 by atomic layer deposition (ALD). Whereas the as‐deposited TiO2 layers on PEO fibers and Ag NPs were completely amorphous, the TiO2 layers were transformed into polycrystalline TiO2 nanotubes (NTs) with embedded Ag NPs after calcination. Their plasmonic effect can be controlled by varying the thickness of the dielectric Al2O3 spacer between Ag NPs and dye molecules by means of the ALD process. Electronic and spectroscopic analyses demonstrated enhanced photocurrent generation and solar‐cell performance due to the intense electromagnetic field of the dye resulting from the surface plasmon effect of the Ag NPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号