首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple method using direct injection of human blood samples and quantitative analysis of formate was developed for rapid diagnosis of methanol poisoning. A sample pretreatment device including a 500 Da molecular weight cut-off dialysis membrane was in-line coupled to capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D). 50 μL of 1:9 diluted blood samples and 50 μL of DI water were filled into the donor and the acceptor chamber, respectively, and small ionic species in blood samples were electrokinetically injected across the dialysis membrane directly into the separation capillary. Matrix components, such as red blood cells, proteins, lipids and other high molecular weight compounds, were retained by the dialysis membrane and did not interfere with subsequent CE separation. Formate was separated from other small anions in an optimized background electrolyte solution consisting of 20 mM l-histidine and 25 mM l-glutamic acid at pH 4.8. The method showed excellent analytical parameters in terms of repeatability and linearity; RSD values for migration times and peak areas at a formate concentration typical for methanol poisoning were below 0.3% and 7.4%, respectively, and linear calibration curves with correlation coefficients better than 0.999 were obtained. Limit of detection and limit of quantification were 15 and 50 μM formate in original (undiluted) blood samples, respectively. The method was applied to determination of formate in serum samples of a patient diagnosed with acute methanol poisoning.  相似文献   

2.
In this study, the development of our purpose-made capacitively coupled contactless conductivity detection (C4D) for CE is reported. These systems have been employed as a simple, versatile, and cost-effective analytical tool. CE-C4D devices, whose principle is based on the control of the ion movements under an electrical field, can be constructed even with a modest financial budget and limited infrastructure. A featured application was developed for quality control of antimicrobial drugs using CE-C4D, with most recent work on determination of aminoglycoside and glycopeptide antibiotics being communicated. For aminoglycosides, the development of CE-C4D methods was adapted to two categories. The first one includes drugs (liquid or powder form) for intravenous injection, containing either amikacin, streptomycin, kanamycin A, or kanamycin B. The second one covers drugs for eye drops (liquid or ointment form), containing either neomycin, tobramycin, or polymyxin. The CE-C4D method development was also made for determination of some popular glycopeptide antibiotics in Vietnam, including vancomycin and teicoplanin. The best detection limit achieved using the developed CE-C4D methods was 0.5 mg/L. Good agreement between results from CE-C4D and the confirmation method (HPLC- Photometric Diode Array ) was achieved, with their result deviations less than 8% and 13% for aminoglycoside and glycopeptide antibiotics, respectively.  相似文献   

3.
A fast method for the determination of tropane alkaloids, using a portable CE instrument with a capacitively coupled contactless conductivity detector (CE-C4D) was developed and validated for determination of atropine and scopolamine in seeds from Solanaceae family plants. Separation was obtained within 5 min, using an optimized background electrolyte consisting of 0.5 M acetic acid with 0.25% (w/v) β-CD. The limit of detection and quantification was 0.5 µg/mL and 1.5 µg/mL, respectively, for both atropine and scopolamine. The developed method was validated with the following parameters—precision (CV): 1.07–2.08%, accuracy of the assay (recovery, RE): 101.0–102.7% and matrix effect (ME): 92.99–94.23%. Moreover, the optimized CE-C4D method was applied to the analysis of plant extracts and pharmaceuticals, proving its applicability and accuracy.  相似文献   

4.
6-l-[18F]Fluoro-m-tyrosine (6-l-[18F]FMT) represents a valuable alternative to 6-l-[18F]FDOPA which is conventionally used for the diagnosis and staging of Parkinson’s disease. However, clinical applications of 6-l-[18F]FMT have been limited by the paucity of practical production methods for its automated production. Herein we describe the practical preparation of 6-l-[18F]FMT using alcohol-enhanced Cu-mediated radiofluorination of Bpin-substituted chiral Ni(II) complex in the presence of non-basic Bu4ONTf using a volatile iPrOH/MeCN mixture as reaction solvent. A simple and fast radiolabeling procedure afforded the tracer in 20.0 ± 3.0% activity yield within 70 min. The developed method was directly implemented onto a modified TracerLab FX C Pro platform originally designed for 11C-labeling. This method enables an uncomplicated switch between 11C- and 18F-labeling. The simplicity of the developed procedure enables its easy adaptation to other commercially available remote-controlled synthesis units and paves the way for a widespread application of 6-l-[18F]FMT in the clinic.  相似文献   

5.
《Analytical letters》2012,45(14):2165-2179
Novel and rapid capillary electrophoresis-coupled tandem mass spectrometry (CE-MS/MS) and capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D) methods have been developed for the separation and determination of three neuromuscular blocking agents: pancuronium, vecuronium, and rocuronium. In both cases, the separation was conducted in background electrolytes based on acidic acetate-ammonium buffers to avoid possible decomposition of the analytes that are known to be unstable in alkaline media. Baseline resolution of the analytes was achieved in the presence of modified γ-cyclodextrin by CE with C4D detection. The two detection techniques were compared with regard to analytical figures of merit including linear dynamic range, limit of detection, limit of quantification, precision, and accuracy. The calibration curves showed good linearity for both detection methods examined (characterized by r2 ≥ 0.9908). The LODs of the CE-MS/MS and the CE-C4D methods differed at least by two orders of magnitude considering all analytes. The differences in precision and accuracy of these methods were evaluated and discussed. The assays of pancuronium, vecuronium, and rocuronium in commercial injection solutions by CE-MS/MS and CE-C4D were performed and the results compared.  相似文献   

6.
In this work, a capillary electrophoresis (CE) procedure was developed for the simultaneous determination of a pharmaceutical drug and its counter-ion, namely labetalol hydrochloride. For this purpose, an uncoated fused-silica capillary, a low conductivity background electrolyte (BGE) and a capacitively coupled contactless conductivity detector (C4D) were employed. This detection system is highly sensitive and enables detection of inorganic as well as organic ions unlike with direct UV detection. Moreover, to be able to simultaneously analyze the cationic drug (labetalol+) and its anionic counter-ion (Cl) in the same electrophoretic run without the need of a coated capillary, a dual-opposite end injection was performed. In this technique, the sample is hydrodynamically injected into both ends of the capillary. This method is simple and easy to perform since the different injection steps are automated by the CE software.This novel CE-C4D procedure with dual-opposite end injection has been successfully validated and applied for the analysis of chloride content in an adrenergic antagonist (labetalol hydrochloride). Thus, the hereby developed method has been shown to enable fast (analysis time < 10 min), precise (repeatability of migration times < 0.7% and of corrected-peak areas < 3.3%; n = 6) and rugged analyses for the simultaneous determination of a pharmaceutical drug and its counter-ion.  相似文献   

7.
A method was developed to determine traces of trifluoroacetic acid as impurity in synthetic or semi-synthetic drugs as antibiotics, macropeptides, etc. Capillary electrophoresis in combination with capacitively coupled contactless conductivity detection (CE-C4D) was used due to lack of UV absorbance property of trifluoroacetic acid (TFA). The optimized method took less than 1 min with good linearity (R2 = 0.9995) for trifluoroacetic acid concentration from 2 to 100 ppm. It also has a good repeatability expressed by the relative standard deviation (% RSD) which is 1.2 and 2.1% for intraday and interday precision, respectively, at 50 ppm TFA, and good sensitivity with 0.34 ppm, 1.2 ppm LOD and LOQ, respectively. In addition, the content of TFA in synthetic drug, was determined using the validated method which gave good linearity (R2 = 0.9996) for trifluoroacetic acid spiked into drug in a concentration range of 2-80 ppm, with good intraday repeatability of 2.0%.The analysis is performed in a background electrolyte composed of 20 mM morpholinoethane-sulfonic acid (Mes) and 20 mM l-histidine (l-His) pH 6.1. Cetyltrimethylammonium bromide (CTAB) was added as flow modifier in a concentration (0.2 mM) lower than the critical micellar concentration. Ammonium formate 6 ppm was used as internal standard. The applied voltage was 30 kV in reverse polarity. A fused silica capillary with 75 μm internal diameter and total length 47 cm (31 cm to C4D detector and 37 cm to DAD detector) was used.  相似文献   

8.
Determination of the broad-spectrum antibiotics amoxicilline (AMX) and ceftazidime (CTZ) in blood serum and microdialysates of the subcutaneous tissue of the lower limbs is performed using CE with contactless conductivity detection (C4D). Baseline separation of AMX is achieved in 0.5 M acetic acid as the background electrolyte and separation of CTZ in 3.2 M acetic acid with addition of 13% v/v methanol. The CE-C4D determination is performed in a 25 µm capillary with suppression of the EOF using INST-coating on an effective length of 18 cm and the attained migration time is 4.2 min for AMX and 4.4 min for CTZ. The analysis was performed using 20 µl of serum and 15 µl of microdialysate, treated by the addition of acetonitrile in a ratio of 1/3 v/v and the sample is injected into the capillary using the large volume sample stacking technique. The LOQ attained in the microdialysate is 148 ng/ml for AMX and 339 ng/ml for CTZ, and in serum 143 ng/ml for AMX and 318 ng/ml for CTZ. The CE-C4D method is employed for monitoring the passage of AMX and CTZ from the blood circulatory system into the subcutaneous tissue at the sites of diabetic ulceration in patients suffering from diabetic foot syndrome and also for measuring the pharmacokinetics following intravenous application of bolus antibiotic doses.  相似文献   

9.
Wei R  Li W  Yang L  Jiang Y  Xie T 《Talanta》2011,83(5):334-1490
A sensitive method of online preconcentration followed by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D) is evaluated as a novel approach for the determination of benzoic acid and sorbic acid in soy sauce. The online preconcentration technique, namely field-enhanced sample injection, coupled with CE-C4D were successfully developed and optimized. In order to reduce the complex matrix interference resulting from the constituents of soy sauce, a suitable sample clean-up procedure was also investigated for real sample pretreatment. Under optimized conditions, sorbic acid and benzoic acid were well separated within 10 min, and the detection limits were 0.05 μM (5.6 μg L−1) and 0.08 μM (9.8 μg L−1), respectively. The accuracy was tested by spiking 10.0 mg L−1 and 100.0 mg L−1 of standards in the soy sauce samples, and the recoveries were 95-99%, respectively. Results of this study show a great potential for the proposed method as a tool for the fast screening of benzoic acid and sorbic acid in a complex matrix.  相似文献   

10.
Fe–N-heterocyclic carbene (NHC) complexes attract increasing attention as photosensitisers and photoredox catalysts. Such applications generally rely on sufficiently long excited state lifetimes and efficient bimolecular quenching, which leads to there being few examples of successful usage of Fe–NHC complexes to date. Here, we have employed [Fe(iii)(btz)3]3+ (btz = (3,3′-dimethyl-1,1′-bis(p-tolyl)-4,4′-bis(1,2,3-triazol-5-ylidene))) in the addition of alkyl halides to alkenes and alkynes via visible light-mediated atom transfer radical addition (ATRA). Unlike other Fe–NHC complexes, [Fe(iii/ii)(btz)3]3+/2+ benefits from sizable charge transfer excited state lifetimes ≥0.1 ns in both oxidation states, and the Fe(iii) 2LMCT and Fe(ii) 3MLCT states are strong oxidants and reductants, respectively. The combined reactivity of both excited states enables efficient one-electron reduction of the alkyl halide substrate under green light irradiation. The two-photon mechanism proceeds via reductive quenching of the Fe(iii) 2LMCT state by a sacrificial electron donor and subsequent excitation of the Fe(ii) product to its highly reducing 3MLCT state. This route is shown to be more efficient than the alternative, where oxidative quenching of the less reducing Fe(iii) 2LMCT state by the alkyl halide drives the reaction, in the absence of a sacrificial electron donor.

An iron complex with N-heterocyclic carbene ligands engages in efficient photoredox catalysis via excited state electron transfer reactions of its Fe(ii) and Fe(iii) oxidation states.  相似文献   

11.
Supramolecular oleogel is a soft material with a three-dimensional structure, formed by the self-assembly of low-molecular-weight gelators in oils; it shows broad application prospects in the food industry, environmental protection, medicine, and other fields. Among all the gelators reported, amino-acid-based compounds have been widely used to form organogels and hydrogels because of their biocompatibility, biodegradation, and non-toxicity. In this study, four Nα, Nε-diacyl-l-lysine gelators (i.e., Nα, Nε-dioctanoyl-l-lysine; Nα, Nε-didecanoyl-l-lysine; Nα, Nε-dilauroyl-l-lysine; and Nα, Nε-dimyristoyl-l-lysine) were synthesized and applied to prepare oleogels in four kinds of vegetable oils. Gelation ability is affected not only by the structure of the gelators but also by the composition of the oils. The minimum gel concentration (MGC) increased with the increase in the acyl carbon-chain length of the gelators. The strongest gelation ability was displayed in olive oil for the same gelator. Rheological properties showed that the mechanical strength and thermal stability of the oleogels varied with the carbon-chain length of the gelators and the type of vegetable oil. The microstructure of oleogels is closely related to the carbon-chain length of gelators, regardless of oil type. The highest oil-binding capacity (OBC) was obtained in soybean oil for all four gelators, and Nα, Nε-dimyristoyl-l-lysine showed the best performance for entrapping oils.  相似文献   

12.
流动注入式乳酸生物传感器   总被引:2,自引:0,他引:2  
研制了一种测定L-乳酸的生物传感器,将乳酸氧化酶(LOD)通过共价键固定在尼龙钢上制备乳酸氧化酶膜,将制得的酶膜固定在氧电极上构成乳酸生物传感器;将透析膜放在氧化酶膜上产生对L-乳酸扩散高度限制来改变该生物传感器的响应;酶膜机械强度高,在氧电极上反复装卸而不损坏,所构成的乳酸生物传感器的校正曲线的乳酸定量上限达5mmol/L,响应时间小于30s;初步血样测试的结果显示该乳酸生物传感器用于临床血乳酸的测定具有可行性。  相似文献   

13.
There is significant interest in ligands that can stabilize actinide ions in oxidation states that can be exploited to chemically differentiate 5f and 4f elements. Applications range from developing large-scale actinide separation strategies for nuclear industry processing to carrying out analytical studies that support environmental monitoring and remediation efforts. Here, we report syntheses and characterization of Np(iv), Pu(iv) and Am(iii) complexes with N-tert-butyl-N-(pyridin-2-yl)hydroxylaminato, [2-(tBuNO)py](interchangeable hereafter with [(tBuNO)py]), a ligand which was previously found to impart remarkable stability to cerium in the +4 oxidation state. An[(tBuNO)py]4 (An = Pu, 1; Np, 2) have been synthesized, characterized by X-ray diffraction, X-ray absorption, 1H NMR and UV-vis-NIR spectroscopies, and cyclic voltammetry, along with computational modeling and analysis. In the case of Pu, oxidation of Pu(iii) to Pu(iv) was observed upon complexation with the [(tBuNO)py] ligand. The Pu complex 1 and Np complex 2 were also isolated directly from Pu(iv) and Np(iv) precursors. Electrochemical measurements indicate that a Pu(iii) species can be accessed upon one-electron reduction of 1 with a large negative reduction potential (E1/2 = −2.26 V vs. Fc+/0). Applying oxidation potentials to 1 and 2 resulted in ligand-centered electron transfer reactions, which is different from the previously reported redox chemistry of UIV[(tBuNO)py]4 that revealed a stable U(v) product. Treatment of an anhydrous Am(iii) precursor with the [(tBuNO)py] ligand did not result in oxidation to Am(iv). Instead, the dimeric complex [AmIII2-(tBuNO)py)((tBuNO)py)2]2 (3) was isolated. Complex 3 is a rare example of a structurally characterized non-aqueous Am-containing molecular complex prepared using inert atmosphere techniques. Predicted redox potentials from density functional theory calculations show a trivalent accessibility trend of U(iii) < Np(iii) < Pu(iii) and that the higher oxidation states of actinides (i.e., +5 for Np and Pu and +4 for Am) are not stabilized by [2-(tBuNO)py], in good agreement with experimental observations.

The coordination modes and electronic properties of a strongly coordinating hydroxylaminato ligand with Np, Pu and Am were investigated.Complexes were characterized by a range of experimental and computational techniques.  相似文献   

14.
Coordination hosts based on flexible ligands have received increasing attention due to their inherent adaptive cavities that often show induced-fit guest binding and catalysis like enzymes. Herein, we report the controlled self-assembly of a series of homo/heterometallic coordination hosts (Me4enPd)2n(ML)n [n = 2/3; M = Zn(ii)/Co(ii)/Ni(ii)/Cu(ii)/Pd(ii)/Ag(i); Me4en: N,N,N′,N′-tetramethylethylenediamine] with different shapes (tube/cage) from a flexible tetraazacyclododecane-based pyridinyl ligand (L) and cis-blocking Me4enPd(ii) units. While the Ag(i)-metalated ligand (AgL) gave rise to the formation of a (Me4enPd)4(ML)2-type cage, all other M(ii) ions led to isostructural (Me4enPd)6(ML)3-type tubular complexes. Structural transformations between cages and tubes could be realized through transmetalation of the ligand. The buffering effect on the ML panels endows the coordination tubes with remarkable acid–base resistance, which makes the (Me4enPd)6(ZnL)3 host an effective catalyst for the CO2 to CO32− conversion. Control experiments suggested that the integration of multiple active Zn(ii) sites on the tubular host and the perfect geometry match between CO32− and the cavity synergistically promoted such a conversion. Our results provide an important strategy for the design of adaptive coordination hosts to achieve efficient carbon fixation.

A series of coordination hosts were prepared and their applications in CO2 fixation were studied.  相似文献   

15.
A capillary zone electrophoresis (CZE) method with sensitivity cell (bubble cell) has been developed for the determination of sodium glucocorticoid hemisuccinates (Urbason® solubile forte 1000, Hydrocortison 100 Rotexmedica®, Prednisolut 100®) in biological media (plasma, urine). The samples in urine were diluted (1:1 v/v) in water and were injected into the apparatus without any further sample preparation. In plasma the formulations were also analyzed quantitatively. Here it was necessary to precipitate the protein component. Good results were achieved by treating with acetonitrile (1:3 v/v). The present results have shown that the investigation using a capillary with bubble cell led to an approximately 9-fold improvement of the detection limit compared to standard capillaries. The samples in the biological media were analyzed using a calibration curve for prednisolone hemisuccinate concentrations between 2.5 and 500 μg.mL?1. The detection limit and the relative standard deviation of the migration times and of the peak areas were determined.  相似文献   

16.
The emergence of antibiotic resistance makes the therapeutic effect of traditional antibiotics far from satisfactory. Here, chiral gold nano-bipyramids (GBPs) with sea cucumber-like morphology are reported, and used in the fight against bacterial infection. Specifically, the dipeptide of d-/l-Cys-Phe (CF) caused the nano-bipyramids to form a spike shape with an optical anisotropy factor of 0.102 at 573 nm. The antibacterial effects showed that d-GBPs and l-GBPs could efficiently destroy bacteria with a death ratio of 98% and 70% in vitro. Also, both in vivo skin infection and sepsis models showed that the chiral GBPs could effectively promote wound healing and prevent sepsis in mice. Mechanistic studies showed that the binding affinity of d-GBPs (1.071 ± 0.023 × 108 M−1) was 12.39-fold higher than l-GBPs (8.664 ± 0.251 × 106 M−1) to protein A of Staphylococcus aureus, which caused further adsorption of d-GBPs onto the bacterial surface. Moreover, the physical destruction of the bacterial cell wall caused by the spike chiral GBPs, resulted in a stronger antibacterial effect for d-GBPs than l-GBPs. Furthermore, the excellent PTT of d-/l-GBPs further exacerbated the death of bacteria without any side-effect. Overall, chiral nano-bipyramids have opened a new avenue for improved antibacterial efficacy in the treatment of bacterial infections.

Chiral gold nano-bipyramids (GBPs) with sea cucumber-like morphology and an optical anisotropy factor of 0.102 at 573 nm are reported, and used in the fight against bacterial infection both in vitro and in vivo.  相似文献   

17.
A selective and rapid ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method was established and validated for the determination of ziyuglycoside I, 3β,19α-dihydroxyurs-12-en-28-oic-acid 28-β-d-glucopyranosyl ester, and pomolic acid in rats after the oral administration of ziyuglycoside I, 3β,19α-dihydroxyurs-12-en-28-oic-acid 28-β-d-glucopyranosyl ester, pomolic acid, and Sanguisorba officinalis L. extract. The separation was carried out on an ACQUITY UPLC®HSS T3 column (2.1 mm × 100 mm, 1.8 μm), using methanol and 5 mmol/L ammonium acetate water as the mobile phase. The three compounds were quantified using the multiple reaction monitoring mode with the electrospray ion source in both the positive and negative mode. Liquid-liquid extraction was applied to the plasma sample preparation. Bifendate was selected as the internal standard. The intra-day and inter-day precision and the accuracy of the method were all within receivable ranges. The lower limit of quantification of ziyuglycoside I, 3β,19α-dihydroxyurs-12-en-28-oic-acid 28-β-d-glucopyranosyl ester, and pomolic acid were 6.50, 5.75, and 2.63 ng/mL, respectively. The extraction recoveries of analytes in rat plasma ranged from 83 to 94%. The three components could be rapidly absorbed into the blood (Tmax, 1.4–1.6 h) both in the single-administration group or S. officinalis extract group, but the first peak of PA occurred at 0.5 h and the second peak at 4–5 h in the S. officinalis extract. Three compounds were eliminated relatively slowly (t1/2, 7.3–11 h). The research was to establish a rapid, sensible, and sensitive UHPLC–MS/MS method using the multi-ion mode for multi-channel simultaneous mensuration pharmacokinetics parameters of three compounds in rats after oral administration of S. officinalis extract. This study found, for the first time, differences in the pharmacokinetic parameters of the three compounds in the monomer compounds and S. officinalis extract administration, which preliminarily revealed the transformation and metabolism of the three compounds in vivo.  相似文献   

18.
A planar multibiosensor for the simultaneous determination of glucose and lactate is developed by combining the Prussian Blue-based electrocatalyst and the protocol for immobilization of glucose oxidase and lactate oxidase enzymes from solutions with a high content of an organic solvent. High sensitivity coefficients (>80 mA M–1 cm–2 for lactate and >20 mA M –1 cm–2 for glucose) are demonstrated by the multibiosensors operating in the flow-injection mode in a thin-layer measuring cell. The linear range of the analyzed concentration is 1–500 μM for lactate and 5–1000 μM for glucose. A multibiosensor can be used repeatedly (the exhibited operational stability is not less than 100 measurements without the need for recalibration), which allows using it for the analysis of diluted blood samples and blood serum. The electrocatalytic system with a multibiosensor demonstrates performance characteristics that are superior to the commercial analyzers.  相似文献   

19.
The stabilization of uranyl(v) (UO21+) by Fe(ii) in natural systems remains an open question in uranium chemistry. Stabilization of UVO21+ by Fe(ii) against disproportionation was also demonstrated in molecular complexes. However, the relation between the Fe(ii) induced stability and the change of the bonding properties have not been elucidated up to date. We demonstrate that U(v) – oaxial bond covalency decreases upon binding to Fe(ii) inducing redirection of electron density from the U(v) – oaxial bond towards the U(v) – equatorial bonds thereby increasing bond covalency. Our results indicate that such increased covalent interaction of U(v) with the equatorial ligands resulting from iron binding lead to higher stability of uranyl(v). For the first time a combination of U M4,5 high energy resolution X-ray absorption near edge structure (HR-XANES) and valence band resonant inelastic X-ray scattering (VB-RIXS) and ab initio multireference CASSCF and DFT based computations were applied to establish the electronic structure of iron-bound uranyl(v).

The role of Fe in the increased stability of uranyl(v) is clarified by using state of the art uranium metalorganic chemistry, advanced X-ray spectroscopic approaches and computations.  相似文献   

20.
A newly-developed method of complete separation and sensitive determination of o-, m-, and p-aminobenzoic acid isomers was achieved by combining open-tubular columns for capillary electrochromatography (OT-CEC) and online sample stacking. In this study, spherical gold nanoparticles were modified by a covalent attachment of mono-6-thio-β-cyclodextrin, and OT-CEC was formed by immobilizing cyclodextrin-modified gold nanoparticles (CD-AuNP) on prederivatized 3-mercaptopropyl-trimethoxysilane fused-silica capillaries. Based on the theory of moving chemical reaction boundary, effects of several important factors such as the pH and concentration of running buffer and the conditions of stacking analytes were optimized. The optimized separations were carried out in 58 mmol/L HAc buffer at pH 3.0 using a capillary coated with CD-AuNP, while the optimized concentration was carried out in 50 mmol/L disodium hydrogen phosphate (pH 9.5). The linear ranges for m-, p-, and o-aminobenzoic acid were from 5.0 × 10?4–0.1, 5.0 × 10?4–0.1 and 1.0 × 10?4–0.1 mmol/L, respectively. And the detection limits (S/N = 3) were as low as 8.22 × 10?5, 8.21 × 10?5, and 3.76 × 10?5 mmol/L for m-, p-, and o-aminobenzoic acid, respectively. The run-to-run, day-to-day, and column-to-column reproducibilities of migration time were satisfactory with relative standard deviation values of less than 4.5 % in all cases. This method was successfully used in determining procaine hydrochloride injection sample with recoveries in the range of 96.1–106.6 % and relative standard deviations less than 5.0 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号