首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Four different organic solvents: dimethylformamide, 1,4-dioxane, n-propanol and ethanol were evaluated as alternative organic modifiers to acetonitrile for liquid chromatography (LC) separations. The aim was to establish common sets of chromatographic conditions that could be applied for LC hyphenation to inductively coupled plasma mass spectrometry (ICPMS) as well as to electrospray ionization MS (ESIMS). The approach was to evaluate candidate solvents that, compared to acetonitrile, potentially could give improved analytical performance (low solvent vapor loading, maximized analyte sensitivity and minimized carbon depositions on instrumental parts) in ICPMS analysis while retaining chromatographic and ESIMS performances. The study showed that dimethylformamide, 1,4-dioxane, n-propanol and ethanol all can be advantageous chromatographic modifiers for LC–ICPMS analysis, giving superior performance compared to acetonitrile. For the combined use of LC–ICPMS and LC–ESIMS with a common set of chromatographic conditions, n-propanol gave the best overall performance. The 195Pt+ signal in ICPMS was continuously monitored during a 0–60% organic solvent gradient and at 25% of organic modifier, 100% of the signal obtained at the gradient start was preserved for n-propanol compared to only 35% of the signal when using acetonitrile. Platinum detection limits were 5–8 times lower using n-propanol compared with acetonitrile. Signal-to-noise ratio in continuous ESIMS signal measurements was 100, 90 and 110 for a 100 μg/ml solution of leucine–enkephaline using acetonitrile, ethanol and n-propanol, respectively. Chromatographic efficiency in reversed phase separations was preserved for n-propanol compared to acetonitrile for the analysis of the whole protein cytochrome C and the peptide bacitracin on a column with particle and pore sizes of 5 μm and 300 Å, but slightly deteriorated for the separation of the peptides leucine–enkephaline and bacitracin on a 3 μm and 90 Å column as the peak width at half height for both peptides increased by a factor of two. The performance on the smaller dimensioned column could however be improved by running the separations at 40 °C.  相似文献   

2.
An ICP–MS instrument fitted with an octopole reaction system (ORS) was used to directly measure the inorganic contents of several biofuel materials. Following sample preparation by simple dilution in kerosene, the biofuels were analysed directly. The ORS effectively removed matrix- and plasma-based spectral interferences to enable measurement of all important analytes, including sulfur, at levels below those possible by ICP–OES. A range of commonly produced biofuels was analysed, and spike recovery and long-term stability data was acquired. Suitably configured ICP–MS has been shown to be a fast and very sensitive technique for the elemental analysis of biofuels.  相似文献   

3.
Multielement analyses of environmental reference materials have been performed using existing certified reference materials (CRMs) as calibration standards for inductively coupled plasma–mass spectrometry. The analyses have been performed using a high-performance methodology that results in comparison measurement uncertainties that are significantly less than the uncertainties of the certified values of the calibration CRM. Consequently, the determined values have uncertainties that are very nearly equivalent to the uncertainties of the calibration CRM. Several uses of this calibration transfer are proposed, including, re-certification measurements of replacement CRMs, establishing traceability of one CRM to another, and demonstrating the equivalence of two CRMs. RM 8704, a river sediment, was analyzed using SRM 2704, Buffalo River Sediment, as the calibration standard. SRM 1632c, Trace Elements in Bituminous Coal, which is a replacement for SRM 1632b, was analyzed using SRM 1632b as the standard. SRM 1635, Trace Elements in Subbituminous Coal, was also analyzed using SRM 1632b as the standard.  相似文献   

4.
Abstract

Studying wine mineral profile has been proven as a valuable tool in geographical origin discrimination and authenticity for both producers and consumers. Adulteration of wines, in terms of geographical origin or variety, is considered a major topic of extensive research. Traceability and authenticity of wines have been previously studied on the basis of typical mineral element patterns by means of chemometric methods. In this context, analytical methods were developed for the determination of mineral elements in wines by inductively coupled plasma–mass spectrometry. This study aimed at classifying selected varietal Greek wines from various regions by employing instrumental analysis. Preliminary data of wine mineral content enabled for the classification of samples according to geographical origin and variety. However, further work is required in order to draw more valid conclusions and to obtain a detailed map of the mineral element content of Greek wines according to their geographical origin and/or variety.  相似文献   

5.
In a new approach to the characterization and quantification of metallothionein isoforms an on-line isotope-dilution method in combination with the coupling of capillary electrophoresis (CE) to an inductively coupled plasma-sector field mass spectrometer (ICP-SFMS) is reported. Metallothionein (MT) isoforms are separated by CE and the elements Cu, Zn, Cd, and S are detected simultaneously by use of ICP-SFMS in the medium resolution mode. On-line isotope dilution is performed by continuous introduction of an isotopically enriched, species-unspecific spike solution after the separation step. MT from rabbit liver and a further purified MT-1 isoform were quantified by determination of sulfur, and the stoichiometric compositions of the metalloprotein complexes are characterized by determination of their sulfur-to-metal ratios.  相似文献   

6.
Since the species that trigger chromium allergy are not yet known, it is important to gain more of an insight into the mechanism of chromium transport through the skin and into the relationship between chromium allergy and chromium species. In vitro permeation studies with porcine and human skin were performed using a Franz static diffusion cell. Investigations attempted to elucidate (i) which Cr compounds are able to permeate through skin, (ii) the influence the Cr concentration in the donor solution has on the Cr permeation, and (iii) the effect that the time of exposure to the donor solution has on Cr permeation. Capillary electrophoresis hyphenated to inductively coupled plasma–sector field mass spectrometry (CE–ICP–SFMS) was used to separate and quantify the Cr species in the receptor fluid. 50 mmol L−1 phosphate buffer (pH 2.5) was used for CE separation, and two different electrophoretic runs were carried out (in the positive and negative modes). Pneumatic nebulization (PN)-ICP-SFMS was used in order to quantify the total amount of Cr absorbed by the skin after microwave-assisted acid digestion of the tissue. Cr(VI) was found to pass most easily through the skin. Nevertheless, Cr(VI) was also shown to be absorbed more efficiently by the skin than Cr(III), an observation attributed to a more pronounced rejection of the positively charged Cr(III) ions by the skin barrier. These results were in good agreement with in vitro permeation studies previously reported in the literature in which other analytical techniques were used. Differences observed in the permeation of Cr following the application of aqueous Cr donor solutions and Cr-containing simulated sweat donor solutions are also described.   相似文献   

7.
Recent experiments involving aerosol introduction into the inductively coupled plasma have shown that intact droplets and solute particles cause enormous fluctuations in analyte emission and mass-spectral signals. Here, particle-vaporization kinetics are simulated as a detailed function of the operating conditions, fundamental properties and spatial location in the inductively coupled plasma, and as a function of several of the properties of the particles themselves: diameter, chemical composition and size distribution. These simulations portray the particle vaporization as proceeding nominally linearly with respect to the particle radius when the particles are small, but roughly quadratically with radius when the particles are very large. Further, the heat- and mass-transfer-limited rates of vaporization are roughly equal for the typical gas-temperature range in the plasma tail flame, so that at any height either process might limit the rate of vaporization. This similarity gives rise to a dynamic, competitive picture of plasma vaporization kinetics.  相似文献   

8.
The application of inductively coupled plasma – time-of-flight mass spectrometry for the speciation analysis of organolead compounds in environmental waters is described. Construction of the transfer line was achieved by means of a relatively simple and rapid coupling procedure. Derivatization of the ionic lead species was achieved by in-situ propylation with sodium tetrapropylborate; simultaneous extraction of the derivatized compounds in hexane was followed by separation and detection by capillary gas chromatography hyphenated to inductively coupled plasma–time-of-flight mass spectrometry. Detection limits for the different organolead species ranged from 10 to 15 fg (as Pb), corresponding to procedural detection limits between 50 and 75 ng L–1, on the basis of a 50 mL snow sample, extraction with 200 μL hexane, and subsequent injection of 1 μL of the organic extract on to the column. The accuracy of the system was confirmed by additional analysis of the water samples by capillary gas chromatography coupled with microwave-induced plasma–atomic-emission spectrometry and the analysis of a standard reference material CRM 605 (road dust) with a certified content of trimethyllead.  相似文献   

9.
For analysis of uranium in urine determination of the isotope ratio and quantification were investigated by high-resolution inductively coupled plasma mass spectrometry (HR ICP-MS). The instrument used (ThermoFinniganMAT ELEMENT2) is a single-collector MS and, therefore, a stable sample-introduction system was chosen. The methodical set-up was optimized to achieve the best precision for both the isotope ratio and the total uranium concentration in the urine matrix.Three spiked urine samples from an European interlaboratory comparison were analyzed to determine the (235)U/(238)U isotope ratio. The ratio was found to be in the range 0.002116 to 0.007222, the latter being the natural uranium isotope ratio. The first ratio indicates the abundance of depleted uranium.The effect of storage conditions and the stability for the matrix urine were investigated by using "real-life" urine samples from unexposed persons in the Netherlands. For samples stored under refrigeration and acidified the results (range 0.8 to 5.3 ng L(-1) U) were in the normal fluctuation range whereas a decrease in uranium concentration was observed for samples stored at room temperature without acidification.  相似文献   

10.
Xiashi Zhu  Min Wu  Ying Gu 《Talanta》2009,78(2):565-67
A sensitive method for the separation/analysis of Co(II) was described. The β-cyclodextrin cross-linked polymer (β-CDCP) was synthesized and used as solid phase extraction material (SPE) to separate/pre-concentrate trace cobalt coupled with inductively coupled plasma mass spectrometry (ICP-MS) for the analysis of Co(II). The method was based on α-pyridylazo-β-naphthol (PAN) as the complexing agent for Co(II)-PAN at neutral condition and the adsorption behavior of Co(II)-PAN on β-CDCP was studied. Further, p-octylpolyethylene-glycolphenyl ether (Triton X-100) as environment-friendly eluant was used. The linear range, detection limit (DL) and the relative standard deviation (R.S.D.) was 5.0-160.0 ng/mL, 5.84 ng/L and 2.27% (n = 3, c = 30.0 ng/mL) respectively. The enhancement factor was 10. Moreover, the β-CDCP could be used repeatedly and offered better recovery and estimation of standard samples.  相似文献   

11.
Detailed information on the geochemical behavior of radioactive and toxic metal ions under environmental conditions (in geological matrices and aquifer systems) is needed in order to assess the long-term safety of waste repositories. This includes knowledge of the mechanisms of relevant geochemical reactions, as well as associated thermodynamic and kinetic data. Several previous studies have shown that humic acid can play an important role in the immobilization or mobilization of metal ions due to complexation and colloid formation. In our project we investigate the complexation behavior of (purified Aldrich) humic acid and its influence on the migration of the lanthanides europium and gadolinium (homologs of the actinides americium and curium) in the ternary system consisting of these heavy metals, humic acid and kaolinite (KGa-1b) under almost natural conditions. Capillary electrophoresis (CE, Beckman Coulter P/ACE MDQ), with its excellent separation performance, was hyphenated with a homemade interface to inductively coupled plasma mass spectrometry (ICP–MS, VG Elemental PlasmaQuad 3) giving a system that is highly sensitive to the rare-earth element species of europium and gadolinium with humic acid. The humic acid used was also halogenated with iodine, which acted as an ICP–MS marker. To couple CE to ICP–MS, a fused silica CE capillary was flexibly fitted into a MicroMist 50 μl nebulizer with a Cinnabar cyclonic spray chamber in the external homemade interface. The chamber was chilled to a temperature of 4 °C to optimize the sensitivity. 200 ppb of cesium were added to the CE separation buffer so that the capillary flow could be observed. A make-up fluid including 4 ppb Ho as an internal standard was combined with the flow from the capillary within the interface in order to get a fluid throughput high enough to maintain continuous nebulization. Very low detection limits were achieved: 125 ppt for 153Eu and 250 ppt for 158Gd. Using this optimized CE–ICP–MS coupling system it was possible to quantify metal concentrations from the detection limit up to approximately 1 ppm (the linear range). This set-up was used to separate metal/humic acid-species in a 100 mM acetic acid/10 mM acetate buffer system. Using humic acid as the complexing ligand, uncomplexed metal ion species could be separated from metal–humate complexes on a time-resolved scale.   相似文献   

12.
In this study, an ultra-sensitive method for the quantification of lysozyme based on the Gd3+ diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid labeling and capillary electrophoresis–inductively coupled plasma mass spectrometry (CE–ICP–MS) was described. The Gd3+-tagged lysozyme was effectively separated by capillary electrophoresis (CE) and sensitively determined by inductively coupled plasma mass spectrometry (ICP–MS). Based on the gadolinium-tagging and CE–ICP–MS, the lysozyme was determined within 12 min with an extremely low detection limit of 3.89 attomole (3.89 × 10−11 mol L−1 for 100 nL of sample injection) and a RSD < 6% (n = 5). The proposed method has been successfully used to detect lysozyme in saliva samples with a recovery of 91–106%, suggesting that our method is sensitive and reliable. The success of the present method provides a new potential for the biological assays and sensitive detection of low-abundant proteins.  相似文献   

13.
A systematic study on the influence of carbon on the signal of a large number of hard-to-ionize elements (i.e. B, Be, P, S, Zn, As, Se, Pd, Cd, Sb, I, Te, Os, Ir, Pt, Au, and Hg) in inductively coupled plasma–mass spectrometry has been carried out. To this end, carbon matrix effects have been evaluated considering different plasma parameters (i.e. nebulizer gas flow rate, r.f. power and sample uptake rate), sample introduction systems, concentration and type of carbon matrix (i.e. glycerol, citric acid, potassium citrate and ammonium carbonate) and type of mass spectrometer (i.e. quadrupole filter vs. double-focusing sector field mass spectrometer). Experimental results show that P, As, Se, Sb, Te, I, Au and Hg sensitivities are always higher for carbon-containing solutions than those obtained without carbon. The other hard-to-ionize elements (Be, B, S, Zn, Pd, Cd, Os, Ir and Pt) show no matrix effect, signal enhancement or signal suppression depending on the experimental conditions selected. The matrix effects caused by the presence of carbon are explained by changes in the plasma characteristics and the corresponding changes in ion distribution in the plasma (as reflected in the signal behavior plot, i.e. the signal intensity as a function of the nebulizer gas flow rate). However, the matrix effects for P, As, Se, Sb, Te, I, Au and Hg are also related to an increase in analyte ion population caused as a result of charge transfer reactions involving carbon-containing charged species in the plasma. The predominant specie is C+, but other species such as CO+, CO2+, C2+ and ArC+ could also play a role. Theoretical data suggest that B, Be, S, Pd, Cd, Os, Ir and Pt could also be involved in carbon based charge transfer reactions, but no experimental evidence substantiating this view has been found.  相似文献   

14.
To study the permeability of the blood–brain barrier (BBB) to arsenates, arsenite, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), molybdate, and methylmercury, and the transfer behavior of these species, we constructed an automatic online analytical system comprising a microdialysis sampling device, a minicolumn packed with nonfunctionalized poly(vinyl chloride) beads, and an inductively coupled plasma mass spectrometer for continuous in-vivo measurement of their dynamic variation in the extracellular space of the brains of living rats. By using ion–polymer interactions as a novel working mechanism for sample pretreatment of volume-limited microdialysate, we simplified the operating procedure of conventional solid-phase extraction and reduced the contribution to the blank of the chemicals used. After optimizing this hyphenated system, we measured its performance by analysis of NIST standard reference materials 1640a (trace elements in natural water) and 2672a (trace elements in human urine) and by in-vivo monitoring of the dynamic variation of the compounds tested in the extracellular fluid (ECF) of rat brain. We found that intraperitoneal administration led to observable BBB permeability of arsenates, arsenite, DMA, MMA, and molybdate. Nevertheless, the limited sensitivity of the system and the size of microdialysis samples meant that detection of MeHg in ECF remained problematic, even when we administered a dose of 20 mg MeHg kg–1 body weight. On the basis of these practical demonstrations, we suggest that our analytical system could be used not only for dynamic monitoring of the transfer kinetics of the four arsenicals and molybdate in the rat brain but also to describe associated neurotoxicity in terms of exposure to toxic metals and their species.  相似文献   

15.
A comparison is made of four sample introduction techniques for the determination of As by inductively coupled plasma mass spectrometry. The techniques studied were 1) flow injection with pneumatic nebulization (FIA-PN), 2) direct electrothermal vaporization (ETV), 3) continuous hydride generation (HG) and 4) hydride generation with in situ trapping followed by electrothermal vaporization (HG-ETV). It was found that FIA-PN and ETV gave similar detection limits in concentration units (about 20 pg mL–1), although ETV had a much lower absolute detection limit (0.2 pg). Sample introduction by hydride generation gave an inferior detection limit (100–200 pg mL–1), also in combination with in situ trapping and ETV, owing to the blank signal from traces of As in NaBH4 which is difficult to eliminate. The results indicate that the more elaborate sample introduction techniques based on ETV and HG may not offer significant advantages compared to normal solution nebulization for the determination of As in simple sample matrices such as natural fresh waters, where matrix removal is not required.  相似文献   

16.
Dispersive liquid–liquid microextraction (DLLME) was combined with flow injection inductively coupled plasma mass spectrometry for simultaneous determination of cadmium, lead and bismuth in water samples. The metal elements were complexed with sodium diethyldithiocarbamate, and then the complexes were extracted into carbon tetrachloride by using DLLME. Under the optimized conditions, the enrichment factors for Cd, Pb and Bi are 460, 900 and 645 in 5 mL of a spiked water sample, respectively. The calibration graphs for the three metals are linear in the range of concentrations from <10 ng L?1 to 1,000 ng L?1. The detection limits are 0.5 ng L?1, 1.6 ng L?1 and 4.7 ng L?1, respectively. The relative standard deviations for ten replicate measurements of 50 ng L?1 cadmium, lead and bismuth are 2.6%, 6.7%, and 4.9%, respectively, and the relative recoveries in various water samples at a spiking level of 50 ng L?1 range from 83.6% to 107.0%.  相似文献   

17.
Two Americium–Beryllium neutron sources were dismantled, sampled (sub-sampled) and analyzed via inductively coupled plasma mass spectrometry (ICP-MS). Characteristics such as “age” since purification, actinide content, trace metal content and inter and intra source composition were determined. The “age” since purification of the two sources was determined to be 25.0 and 25.4 years, respectively. The systematic uncertainties in the “age” determination were ±4% 2σ. The amount and isotopic composition of U and Pu varied substantially between the sub-samples of Source 2 (n = 8). This may be due to the physical means of sub-sampling or the way the source was manufactured. Source 1 was much more consistent in terms of content and isotopic composition (n = 3 sub-samples). The Be–Am ratio varied greatly between the two sources. Source 1 had an Am–Be ratio of 6.3 ± 52% (1σ). Source 2 had an Am–Be ratio of 9.81 ± 3.5% (1σ). In addition, the trace element content between the samples varied greatly. Significant differences were determined between Sources 1 and 2 for Sc, Sr, Y, Zr, Mo, Ba and W.  相似文献   

18.
A method for the simultaneous determination of selenomethionine (SeMet), selenocysteine (SeCys), and selenite [Se(IV)] in chicken eggs was developed. A sample preparation protocol including defatting, protein denaturation, and carbamidomethylation was optimized in order to achieve complete protein digestion and to avoid SeCys losses. Quantification was carried out by reversed-phase HPLC–inductively coupled plasma mass spectrometry (ICP MS) after quantitative isolation of the selenium-containing fraction by size-exclusion liquid chromatography. The detection limits were 0.06, 0.003, and 0.01 μg g−1 (dry weight) for SeCys, Se(IV) and SeMet, respectively, and the precision was 5–10%. The end products of carbamidomethylation of the different selenium species were identified for the first time by electrospray QTOF MS after custom-designed 2D HPLC purification. Differences in selenium speciation in egg yolk and white were highlighted, the yolk containing more SeCys and the white more SeMet. An insight into selenium bioaccessibility in eggs was obtained by digestion with simulated gastric and gastrointestinal juices and size-exclusion HPLC-ICP MS.  相似文献   

19.
An inductively coupled plasma mass spectrometer (ICP-MS) with a rapid sample-preparative procedure was used for the determination of selenium in blood serum. Blood serum was prepared by dilution in an acidic solution consisting of nitric acid (1%), X-triton (0.1%) and 1-butanol (0.8%). A calibration curve was established for 1-40 microg mL(-1) (r(2)>0.99). The limit of detection was 0.5 microg mL(-1). Repeatability and intermediate precision were satisfactory with relative standard deviations (RSD) of 2.0% and 3.2%, respectively. This method was easily applied to reference materials with satisfactory accuracy. Good correlation (r(2)=0.96) was observed between ICP-MS and atomic absorption spectrometry (AAS) for the determination of (82)Se in blood serum from 23 patients. These results suggest that the sample preparative procedure coupled with ICP-MS can be used for the routine determination of (82)Se in human blood serum.  相似文献   

20.
The slurry sampling technique has been applied for the determination of As, Cd, and Pb in mainstream cigarette smoke condensate (MS CSC) by graphite furnace-atomic absorption spectrometry (GF-AAS) and inductively coupled plasma-mass spectrometry (ICP-MS). The MS CSC of the 1R4F Reference Cigarette was collected by electrostatic precipitation and was subsequently prepared as two slurry samples with and without the dispersing agent Triton X-100. Comparison of results determined by ICP-MS analyses of the 1R4F MS CSC slurry samples with those from the conventional microwave digestion method revealed good agreement. The precision of Triton X-100 slurry sampling and of microwave-assisted digestion was better than 10% RSD, and both were superior to slurry sampling without use of Triton X-100. The accuracy of the analytical results for the Triton X-100 slurry sample was further verified by graphite furnace-atomic absorption spectrometry (GF-AAS). For GF-AAS, the method limits of detection are 1.6, 0.04, and 0.5 microg x L(-1) for As, Cd, and Pb, respectively. For ICP-MS, the method limits of detection are 0.06, 0.01, and 0.38 microg x L(-1) for As, Cd, and Pb, respectively. The MS CSC of the 1R4F Reference Cigarette was collected in accordance with the Federal Trade Commission (FTC) smoking regime (35 mL puff volume of 2-s puff duration at an interval of 60 s) and the concentrations of As, Cd and Pb were 6.0+/-0.5, 69.3+/-2.8, and 42.0+/-2.1 ng/cigarette, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号