首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Synthesis of nanoparticles by green synthesis has a large number of biomedical applications worldwide. In this study, Selenium Nanoparticles (SeNPs) were synthesized by using sodium salt of selenium and Solanum lycopersicum (tomato) fruit juice and seeds extract. The plant extracts were used as a reducing agent in ratio 1:4 i.e. sodium selenite salt (Na2SeO3). SeNPs were characterized by UV–visible spectrophotometry, FTIR and Zeta Sizer analysis. The UV-graphs indicated the highest peak of absorbance at 350 nm. Whereas, FTIR analysis of SeNPs indicated absorbance bands at 3262.35–1633.72 cm?1. Zeta sizer analysis showed the average size of SeNPs for Fruit juice extract as 1020 d.nm. with PDI 0.432. In case of seeds extract, average size was 1155 d.nm. with PDI 0.761; and the PDI value for both extracts showed polyderse nature of these NPs. SeNPs possessed significant antimicrobial activity against selected strains of E. coli, S. aureus, M. luteus, S. enterica, B. subtilis, K. pneumoniae and P. aureginosa. The α-amylase inhibitory assay of these SeNPs indicated that they had antidiabetic role with IC50 value 24.4642 µg/mL. The DPPH assay showed that SeNPs of Solanum lycopersicum have antioxidant activity with IC50 value of 20.7398 µg/mL.  相似文献   

2.
Oroxylum indicum extracts from the seeds collected from Lampang and Pattani provinces in Thailand, and young fruits and flowers exhibited in vitro display antioxidant and antibacterial activities against clinically isolated zoonotic bacteria including Staphylococcus intermedius, Streptococcus suis, Pseudomonas aeruginosa, β-hemolytic Escherichia coli and Staphylococcus aureus. The orange crystals and yellow precipitates were obtained from the preparation processes of the seed extracts. The orange-red crystals from the seeds collected from Lampang province exhibited strong in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging effects (EC50 value = 25.99 ± 3.30 μg/mL) and antibacterial effects on S. intermedius and β-hemolytic E. coli while the yellow precipitate from the same source exhibited only antioxidant activity. Quantitative analysis of phytochemicals in O. indicum samples by spectrophotometric and HPLC techniques showed that they contained different amounts of total phenolic, total flavonoid and three major flavones; baicalin, baicalein and chrysin contents. Young fruit extract, which contained low amounts of flavone contents, still promoted antibacterial effects against the tested bacteria with IC50 values lower than 1 mg/mL and MIC values between 4 to 10 mg/mL in S. intermedius, S. aureus and S suis while higher IC50 and MIC values against P. aeruginosa and β-hemolytic E. coli were found. From scanning electron microscopy, the extract of the young fruit of O. indicum promoted morphological changes in the bacterial cells by disrupting the bacterial cell walls, inducing leakage of the cellular content, and generating the abnormal accumulation of cells. The mechanism of action of the extract for this antibacterial effect may be the disruption of the cell membrane and abnormal cell aggregations. Regression analysis of the results suggests the correlation between total phenolic and total flavonoid contents and antioxidant and antibacterial effects. Baicalin was found to have a high correlation with an inhibitory effect against β-hemolytic E. coli while three unidentified peaks, which could be flavones, showed high correlations with an inhibitory effect against S. intermedius, S. suis, P. aeruginosa and S. aureus.  相似文献   

3.
This study aimed to determine the chemical composition of different types of tissue of Cedrus brevifolia Henry (Pinaceae) methanolic extracts, namely needles, twigs, branches, and bark. Cedrus brevifolia is a narrow endemic coniferous tree species of Cyprus, growing in a sole population in the mountainous area of Paphos Forest. Chemical analysis of the extracts was performed using liquid chromatography combined with time-of-flight high-resolution mass spectrometry (LC/Q-TOF/HRMS). The majority of the 36 compounds tentatively identified belonged to the flavonoids family. The extract of needles was the richest extract in terms of secondary metabolites. The extracts were studied for their antioxidant activity using the DPPH free radical scavenging assay. Additionally, the antibacterial activity was evaluated by determining both the minimum inhibitory concentration and the minimum bactericidal concentration against Staphylococcus aureus and Escherichia coli. All extracts demonstrated antioxidant property, while bark gave the highest antioxidant capacity (IC50 value of 0.011 mg/mL) compared to the other tissues. Antibacterial activity was observed against both types of bacteria, with the extract of branches presenting the strongest activity against S. aureus (MIC, 0.097 mg/mL and MBC, 0.195 mg/mL). This is the first time that extracts of needles, twigs, branches, and bark of C. brevifolia are compared regarding their chemical composition as well as their antimicrobial and antioxidant properties.  相似文献   

4.
Solenostemma argel is a desert medicinal plant indigenous to African countries. This research aims to study the pharmacological properties of Solenostemma argel plant. Aerial parts (leaves and flowers) of Solenostemma argel (Delile) Hayane were tested for antibacterial activity, antioxidant activity, anticancer, and anti-inflammatory activity. Phenolic and flavonoid contents of the plant were characterized. There was an increase in the antioxidant activity of Solenostemma argel extract from 12.16% to 94.37% by increasing concentration from10 µg/mL to 1280 µg/mL. The most sensitive organism was S. epidermidis with chloroform extract. The MTT assay revealed that methanolic extracts of Solenostemma argel showed potent cytotoxic effects on the A549, Caco-2, and MDAMB-231 cell lines, respectively. The anti-inflammatory activity increased by increasing the concentration of methanolic extract of Solenostemma argel, using indomethacin as a standard. Gallic acid was the most abundant phenolic acid, followed by synergic acid and p-coumaric acid, respectively. Catechin, quercetin, luteolin, kaempferol and rutin flavonoids were also found in the methanolic extract. GC-mass analysis showed that aerial parts of Solenostemma argel were rich in 2-(5-methyl-5 vinyl tetrahydro-2-furanyl)-2-propanol (11.63%), hexanoic acid methyl ester (10.93%), 3-dioxolane,4-methyl-2-pentadecyl (9.69%), phenol, 2-(1,1-dimethylethyl) (8.50%). It can be concluded that Solenostemma argel methanolic extract contain natural bioactive constituents with potential medicinal importance such as antioxidants, antimicrobial, anti-inflammatory, and anticancer activities.  相似文献   

5.
Epilobium angustifolium L. is applied as an antiseptic agent in the treatment of skin diseases. However, there is a lack of information on human skin penetration of active ingredients with antioxidative potential. It seems crucial because bacterial infections of skin and subcutaneous tissue are common and partly depend on oxidative stress. Therefore, we evaluated in vitro human skin penetration of fireweed ethanol-water extracts (FEEs) by determining antioxidant activity of these extracts before and after penetration study using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and Folin–Ciocalteu methods. Microbiological tests of extracts were done. The qualitative and quantitative evaluation was performed using gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC-UV) methods. The in vitro human skin penetration using the Franz diffusion chamber was assessed. The high antioxidant activity of FEEs was found. Gallic acid (GA), chlorogenic acid (ChA), 3,4-dihydroxybenzoic acid (3,4-DHB), 4-hydroxybenzoic acid (4-HB), and caffeic acid (CA) were identified in the extracts. The antibacterial activities were found against Serratia lutea, S. marcescens, Bacillus subtilis, B. pseudomycoides, and B. thuringiensis and next Enterococcus faecalis, E. faecium, Streptococcus pneumoniae, Pseudomonas aeruginosa, and P. fluorescens strains. In vitro penetration studies showed the penetration of some phenolic acids and their accumulation in the skin. Our results confirm the importance of skin penetration studies to guarantee the efficacy of formulations containing E. angustifolium extracts.  相似文献   

6.
The current study was intended to explore the phytochemical profiling and therapeutic activities of Putranjiva roxburghii Wall. Crude extracts of different plant parts were subjected to the determination of antioxidant, antimicrobial, antidiabetic, cytotoxic, and protein kinase inhibitory potential by using solvents of varying polarity ranges. Maximum phenolic content was notified in distilled water extracts of the stem (DW-S) and leaf (DW-L) while the highest flavonoid content was obtained in ethyl acetate leaf (EA-L) extract. HPLC-DAD analysis confirmed the presence of various polyphenols, quantified in the range of 0.02 ± 0.36 to 2.05 ± 0.18 μg/mg extract. Maximum DPPH scavenging activity was expressed by methanolic extract of the stem (MeOH-S). The highest antioxidant capacity and reducing power was shown by MeOH-S and leaf methanolic extract (MeOH-L), respectively. Proficient antibacterial activity was shown by EA-L extract against Bacillus subtilis and Escherichia coli. Remarkable α-amylase and α-glucosidase inhibition potential was expressed by ethyl acetate fruit (EA-F) and n-Hexane leaf (nH-L) extracts, respectively. In case of brine shrimp lethality assay, 41.67% of the extracts (LC50 < 50 µg/mL) were considered as extremely cytotoxic. The test extracts also showed mild antifungal and protein kinase inhibition activities. The present study explores the therapeutic potential of P. roxburghii and calls for subsequent studies to isolate new bioactive leads through bioactivity-guided isolation.  相似文献   

7.
The green method for synthesizing various nanoparticles is defined as one of the environmentally friendly, promising, and safer technologies. In our study, the selenium nanoparticles (C@SeNPs) were synthesized by Crocus caspius aqueous extract. The existence of functional groups involved in the synthesis of SeNPs that were connected with bioactive compounds was confirmed by the FT-IR spectrum. The TGA curve confirmed about 60 % weight loss between 260 and 500 °C, implying biomolecules surround the metallic core. XRD analysis displayed the trigonal nature of SeNPs. The SEM and TEM images of C@SeNPs demonstrated semi-spherical in shape. EDX analysis identified the intense bond of selenium. Biosynthesized C@SeNPs were discovered to have considerable antioxidant and antibacterial activities on several strains of bacteria. An IC50 value of 67.63 ± 2.5 μg/ml was obtained for their iron-chelating activity. In addition, the fabricated SeNPs have a strong growth inhibitory effect on MCF-7 and AGS cancer cells. C@SeNPs exhibited effective antifungal activity against tested fungi strains and antileishmanial activity against promastigotes. Besides, our NPs were able efficiently to degrade methylene blue (MB) dye in the presence of NaBH4. Thus, the current findings suggest the benefits of using green technology to synthesize SeNPs with potential activity.  相似文献   

8.
In this study, selenium nanoparticles (SeNPs) and cerium oxide nanoparticles (CeONPs) were synthesized by using the extract of Melia azedarach leaves, and Acorus calamusas rhizomes, respectively, and investigated for the biological and sustainable control of yellow, or stripe rust, disease in wheat. The green synthesized NPs were characterized by UV-Visible spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD). The SeNPs and CeONPs, with different concentrations (i.e., 10, 20, 30, and 40 mg/L), were exogenously applied to wheat infected with Puccinia striformis. SeNPs and CeONPs, at a concentration of 30 mg/L, were found to be the most suitable concentrations, which reduced the disease severity and enhanced the morphological (plant height, root length, shoot length, leaf length, and ear length), physiological (chlorophyll and membrane stability index), biochemical (proline, phenolics and flavonoids) and antioxidant (SOD and POD) parameters. The antioxidant activity of SeNPs and CeONPs was also measured. For this purpose, different concentrations (50, 100, 150, 200 and 400 ppm) of both SeNPs and CeONPs were used. The concentration of 400 ppm most promoted the DPPH, ABTS and reducing power activity of both SeNPs and CeONPs. This study is considered the first biocompatible approach to evaluate the potential of green synthesized SeNPs and CeONPs to improve the health of yellow, or stripe rust, infected wheat plants and to provide an effective management strategy to inhibit the growth of Puccinia striformis.  相似文献   

9.
Keladi tikus (Typhonium flagelliforme (Lodd) Blume is a plant that has many benefits in - health such as anticancer, anti-inflammatory, analgesic and antihepatotoxic. This study aims to determine the antibacterial and antioxidant activity of different extracts of leaves T. flagelliforme. The agar diffusion method used in the antibacterial activity; DPPH, the FTC and the TBA method used in the antioxidant activity. The results showed the ethyl acetate, n-butanol and water fraction had antibacterial activity against Bacillus subtilis and Pseudomonas aeruginosa, while the n-hexane fraction had no activity against bacteria tested. The results of antioxidant activity by DPPH method, the FTC and the TBA showed ethyl acetate fraction was the most active (IC50 = 56.32 ppm) fraction among others.  相似文献   

10.

Background

Obtaining new pharmaceutical materials with enhanced properties by using natural compounds and environment-friendly methods is a continuous goal for scientists. Ficaria verna Huds. is a widespread perennial plant with applications in the treat of haemorrhoids and to cure piles; it has also anti-inflammatory, astringent, and antibiotic properties. The goal of the present study is the obtaining and characterization of new F. verna extract/??-cyclodextrin complexes by using only natural compounds, solvents, and environment-friendly methods in order to increase the quality and acceptability versus toxicity indicator. Thus, the flavonoid content (as quercetin) of Ficaria verna Huds. flowers and leaves from the West side of Romania was determined and correlated with their antioxidant activity. Further, the possibility of obtaining ??-cyclodextrin supramolecular systems was studied.

Results

F. verna flowers and leaves extracts were obtained by semi-continuous solid-liquid extraction. The raw concentrated extract was spectrophotometrically analyzed in order to quantify the flavonoids from plant parts and to evaluate the antioxidant activity of these extracts. The F. verna extracts were used for obtaining ??-cyclodextrin complexes; these were analyzed by scanning electron microscopy and Karl Fischer water titration; spectrophotometry was used in order to quantifying the flavonoids and evaluates the antioxidant activity. A higher concentration of flavonoids of 0.5% was determined in complexes obtained by crystallisation method, while only a half of this value was calculated for kneading method. The antioxidant activity of these complexes was correlated with the flavonoid content and this parameter reveals possible controlled release properties.

Conclusions

The flavonoid content of F. verna Huds. from the West side of Romania (Banat county) is approximately the same in flowers and leaves, being situated at a medium value among other studies. ??-Cyclodextrin complexes of F. verna extracts are obtained with lower yields by crystallisation than kneading methods, but the flavonoids (as quercetin) are better encapsulated in the first case most probably due to the possibility to attain the host-guest equilibrium in the slower crystallisation process. F. verna extracts and their ??-cyclodextrin complexes have antioxidant activity even at very low concentrations and could be used in proper and valuable pharmaceutical formulations with enhanced bioactivity.  相似文献   

11.
Natural extracts are a rich source of biomolecules that are useful not only as antioxidant drugs or diet supplements but also as complex reagents for the biogenic synthesis of metallic nanoparticles. The natural product components can act as strong reducing and capping substrates guaranteeing the stability of formed NPs. The current work demonstrates the suitability of extracts of Camellia sinensis, Ilex paraguariensis, Salvia officinalis, Tilia cordata, Levisticum officinale, Aegopodium podagraria, Urtica dioica, Capsicum baccatum, Viscum album, and marine algae Porphyra Yezoensis for green synthesis of AgNPs. The antioxidant power of methanolic extracts was estimated at the beginning according to their free radical scavenging activity by the DPPH method and reducing power activity by CUPRAC and SNPAC (silver nanoparticle antioxidant capacity) assays. The results obtained by the CUPRAC and SNAPC methods exhibited excellent agreement (R2~0.9). The synthesized AgNPs were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), dynamic light scattering (DLS) particle size, and zeta potential. The UV-vis absorption spectra showed a peak at 423 nm confirming the presence of AgNPs. The shapes of extract-mediated AgNPs were mainly spherical, spheroid, rod-shaped, agglomerated crystalline structures. The NPs exhibited a high negative zeta potential value in the range from −49.8 mV to −56.1 mV, proving the existence of electrostatic stabilization. FTIR measurements indicated peaks corresponding to different functional groups such as carboxylic acids, alcohol, phenol, esters, ethers, aldehydes, alkanes, and proteins, which were involved in the synthesis and stabilization of AgNPs. Among the examined extracts, green tea showed the highest activity in all antioxidant tests and enabled the synthesis of the smallest nanoparticles, namely 62.51, 61.19, and 53.55 nm, depending on storage times of 30 min, 24 h, and 72 h, respectively. In turn, the Capsicum baccatum extract was distinguished by the lowest zeta potential, decreasing with storage time from −66.0 up to −88.6 mM.  相似文献   

12.
The increase in antibiotic resistance and the emergence of new bacterial infections have intensified the research for natural products from plants with associated therapy. This study aimed to verify the antibacterial and antioxidant activity of crude extracts of the genus Plectranthus species, being the first report on the modulation of aminoglycosides antibiotic activity by Plectranthus amboinicus extracts. The chemical composition was obtained by chemical prospecting and High-Performance Liquid Chromatography with diode arrangement detector (HPLC/DAD). The antibacterial activities of the extracts alone or in association with aminoglycosides were analyzed using the microdilution test. The antioxidant activity was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging. The phytochemical prospection allowed the flavonoids, saponins, tannins and triterpenoids to be identified. Quercetin, rutin, gallic acid, chlorogenic acid, caffeic acid, catechin, kaempferol, glycosylated kaempferol, quercitrin, and isoquercitrin were identified and quantified. The principal component analysis (PCA) observed the influence of flavonoids and phenolic acids from Plectranthus species on studied activities. Phytochemical tests with the extracts indicated, especially, the presence of flavonoids, confirmed by quantitative analysis by HPLC. The results revealed antibacterial activities, and synergistic effects combined with aminoglycosides, as well as antioxidant potential, especially for P. ornatus species, with IC50 of 32.21 µg/mL. Multivariate analyzes show that the inclusion of data from the antioxidant and antibacterial activity suggests that the antioxidant effect of these species presents a significant contribution to the synergistic effect of phytoconstituents, especially based on the flavonoid contents. The results of this study suggest the antibacterial activity of Plectranthus extracts, as well as their potential in modifying the resistance of the analyzed aminoglycosides.  相似文献   

13.
Previous studies have revealed the numerous biological activities of the fruits of Illicium verum; however, the activities of its leaves and twigs have remained undiscovered. The study aimed to investigate the phytochemical components and antibacterial activity of the various extracts from the leaves and twigs of Illicium verum. The herbal extracts were prepared by supercritical CO2 extraction (SFE) and 95% ethanol extraction, followed by partition extraction based on solvent polarity. Analysis of antimicrobial activity was conducted through the usage of nine clinical antibiotic- resistant isolates, including Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii. Among the tested samples, the SFE extracts exhibited broader and stronger antibacterial activities against the test strains, with a range of MIC between 0.1–4.0 mg/mL and MBC between 0.2–4.5 mg/mL. Observations made through scanning electron microscopy revealed potential mechanism of the antimicrobial activities involved disruption of membrane integrity of the test pathogens. Evaluation of the chemical composition by gas chromatography-mass spectrometry indicated the presence of anethole, anisyl aldehyde, anisyl acetone and anisyl alcohol within the SFE extracts, demonstrating significant correlations with the antibacterial activities observed. Therefore, the leaves and twigs of Illicium verum hold great potential in being developed as new natural antibacterial agents.  相似文献   

14.
This work assessed the phenolic and flavonoid components and their antioxidant, antifungal, and antibacterial effects in the ethanolic extract of barberry leaf and roots. The antibactericidal activity of root and leaf extracts against pathogenic bacteria was tested using agar diffusion and microdilution broth production for the lowest inhibitory concentration (MIC). Berberis vulgaris root and leaf extracts inhibited Staphylococcus aureus ATCC9973, Escherichia coli HB101, Staphylococcus enteritis, and Escherichia coli Cip812. The disc assay technique was used to assess the bactericidal activity of the extracts versus both pathogenic Gram-positive and Gram-negative strains. Hydro alcoholic extract was more effective against bacterial than fungal strains. The results showed that Berberis vulgaris leaf and roots extract had similar antifungal activities. Berberis vulgaris root extract inhibited the mycelial growth of Penicillium verrucosum, Fusarium proliferatum, Aspergillus ochraceous, Aspergillus niger, and Aspergillus flavus. Berberis vulgaris root extract has excellent antioxidant, antibacterial, and antifungal effects. Berberis vulgaris exhibited antimicrobial activity in vitro, and MIC showed that Berberis vulgaris parts efficiently affected pathogens in vitro. In conclusion, both Berberis vulgaris roots and leaves have considerable antibacterial activity and can be used as a source of antibacterial, antioxidant, and bioactive compounds to benefit human health.  相似文献   

15.
The present study focuses on the biological synthesis, characterization, and antibacterial activities of silver nanoparticles (AgNPs) using extracellular extracts of Aspergillus japonicus PJ01.The optimal conditions of the synthesis process were: 10 mL of extracellular extracts, 1 mL of AgNO3 (0.8 mol/L), 4 mL of NaOH solution (1.5 mol/L), 30 °C, and a reaction time of 1 min. The characterizations of AgNPs were tested by UV-visible spectrophotometry, zeta potential, scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric (TG) analyses. Fourier transform infrared spectroscopy (FTIR) analysis showed that Ag+ was reduced by the extracellular extracts, which consisted chiefly of soluble proteins and reducing sugars. In this work, AgNO3 concentration played an important role in the physicochemical properties and antibacterial properties of AgNPs. Under the AgNO3 concentration of 0.2 and 0.8 mol/L, the diameters of AgNPs were 3.8 ± 1.1 and 9.1 ± 2.9 nm, respectively. In addition, smaller-sized AgNPs showed higher antimicrobial properties, and the minimum inhibitory concentration (MIC) values against both E. coli and S. aureus were 0.32 mg/mL.  相似文献   

16.
Acacia ehrenbergiana (Hayne), also known as Salam, is a highly drought resistant shrub distributed in North and East Africa, and the Arabian Peninsula. The plant is gathered for its gum and fiber, and is an important legume species for indigenous populations. In this study, the phytochemical analysis, antibacterial, and antioxidant properties of various alcoholic and aqueous extracts of Acacia ehrenbergiana grown in Qatar were investigated. The qualitative phytochemical screening of this species exhibited the presence of glycosides, tannins, flavonoids, terpenoids, saponins, phenol, and anthraquinones in various extracts. The agar diffusion method was performed to check the antibacterial activity. The acetone and ethanol extracts showed 85% antibacterial activity of the control against Gram-negative E. coli, while the acetone extract had 65% activity against the Bacillus Gram-positive species. The highest activity against Staphylococcus aureus was 65% for the butanol extract. The antioxidant capacities were evaluated by the DPPH method. Various extracts exhibited antioxidant activities similar to or higher than standard antioxidants, with the highest percent inhibition of 95% for the acetone and ethanol extracts. The acetone extracts were further purified by reverse phase combiflash chromatography followed by HPLC. Three of the pure compounds isolated were subjected to MS, FTIR, and NMR spectral analysis and were found to be stigmasterol, spinasterol, and theogallin. In conclusion, the observed antibacterial and antioxidant activities as well as the presence of secondary metabolites with potential medicinal activities makes Acacia ehrenbergiana a potent valuable endemic medicinal plant.  相似文献   

17.
The present work was conducted aiming to evaluate the effect of different solvent extracts on the antioxidant and antibacterial activities of Annona squamosa L. leaves. Four solvents were chosen for the study namely; methanol 80%, acetone 50%, ethanol 50% and boiling water. Acetone and boiling water gave the highest extraction yields as compared to methanol and ethanol. Total phenolic contents of the four extracts were significantly different with acetone being the most efficient solvent and water being the least efficient one. Correlation coefficient between the total antioxidant and total phenolic content was found to be R2 = 0.89 suggesting the contribution of phenolic compounds of the extract by 89% to its total antioxidant activity. The extracts were capable of scavenging H2O2 in a range of 43–54%. Reducing power of the extracts increased by increasing their concentration. The extracts were found to exert low to moderate antibacterial activity compared to a standard antibacterial agent. The bacterial inhibition of the extracts was found to positively correlate with their phenolic contents.  相似文献   

18.
Natural products black cumin—Nigella sativa (N. sativa) and wild garlic—Allium ursinum (AU) are known for their potential role in reducing cardiovascular risk factors, including antracycline chemotherapy. Therefore, this study investigates the effect of N. sativa and AU water and methanolic extracts in a cellular model of doxorubicin (doxo)-induced cardiotoxicity. The extracts were characterized using Ultraviolet-visible (UV-VIS) spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, Liquid Chromatography coupled with Mass Spectrometry (LC-MS) and Gas Chromatography coupled with Mass Spectrometry (GC-MS) techniques. Antioxidant activity was evaluated on H9c2 cells. Cytosolic and mitochondrial reactive oxygen species (ROS) release was evaluated using 2′,7′-dichlorofluorescin-diacetate (DHCF-DA) and mitochondria-targeted superoxide indicator (MitoSOX red), respectively. Mitochondrial membrane depolarization was evaluated by flow cytometry. LC-MS analysis identified 12 and 10 phenolic compounds in NSS and AU extracts, respectively, with flavonols as predominant compounds. FT-IR analysis identified the presence of carbohydrates, amino acids and lipids in both plants. GC-MS identified the sulfur compounds in the AU water extract. N. sativa seeds (NSS) methanolic extract had the highest antioxidant activity reducing both intracellular and mitochondrial ROS release. All extracts (excepting AU methanolic extract) preserved H9c2 cells viability. None of the investigated plants affected the mitochondrial membrane depolarization. N. sativa and AU are important sources of bioactive compounds with increased antioxidant activities, requiring different extraction solvents to obtain the pharmacological effects.  相似文献   

19.
The phytochemical analysis of Vinca minor, V. herbacea, V. major, and V. major var. variegata leaf extracts showed species-dependent antioxidant, antibacterial, and cytotoxic effects correlated with the identified phytoconstituents. Vincamine was present in V. minor, V. major, and V. major var. variegata, while V. minor had the richest alkaloid content, followed by V. herbacea. V. major var. variegata was richest in flavonoids and the highest total phenolic content was found in V. herbacea which also had elevated levels of rutin. Consequently, V. herbacea had the highest antioxidant activity followed by V. major var. variegata. Whereas, the lowest one was of V. major. The V. minor extract showed the most efficient inhibitory effect against both Staphylococcus aureus and E. coli. On the other hand, V. herbacea had a good anti-bacterial potential only against S. aureus, which was most affected at morphological levels, as indicated by scanning electron microscopy. The Vinca extracts acted in a dose-depended manner against HaCaT keratinocytes and A375 melanoma cells and moreover, with effects on the ultrastructure, nitric oxide concentration, and lactate dehydrogenase release. Therefore, the Vinca species could be exploited further for the development of alternative treatments in bacterial infections or as anticancer adjuvants.  相似文献   

20.
Mangifera indica can generate up to 60% of polluting by-products, including peels. However, it has been shown that flavonoids and mangiferin are mainly responsible for the antioxidant, anti-inflammatory, and antibacterial activities closely related to the wound-healing process. The chemical composition of MEMI (methanolic extract of M. indica) was analyzed by HPLC-DAD, as well as concentrations of total phenol (TPC) and flavonoids (TFC) and antioxidant activity (SA50). Wound-healing efficacy was determined by measurements of wound contraction, histological analysis, and tensiometric method; moreover, anti-inflammatory, antibacterial, and acute dermal toxicity (OECD 402) were also evaluated. Phenol, resorcinol, conjugated resorcinol, and mangiferin were detected. TPC, TFC, and SA50 were 136 mg GAE/g, 101.66 mg QE/g, and 36.33 µg/mL, respectively. Tensile strength and wound contraction closure did not show significant differences between MEMI and dexpanthenol groups. Histological analysis (after 14 days) shows a similar architecture between MEMI treatment and normal skin. MEMI exhibits a reduction in edema. Staphylococcus epidermidis had an MIC of 2 mg/mL, while Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli reached 4 mg/mL. The MEMI showed no signs of toxicity. Therefore, this study demonstrates multiple targets that flavonoids and mangiferin of MEMI may present during the healing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号