首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel fluorogenic probe for monoamine oxidase assays   总被引:1,自引:0,他引:1  
Monoamine oxidase is flavoenzymes, widely distributed in mammals. It is well recognized that MAOs serve an important role in metabolism that they have close relationship with health .Along with the discoveries between MAOs and neurotic disease, more and more studies have been jumped in .In this paper, we design a new probe for assaying the activities of MAOs. The results showed that the probe [7-(3-aminopropoxy)coumarin] is simple, effective and sensitive for MAOB.  相似文献   

2.
Herein, we introduce an approach for the computational screening of stoichiometric reactions between trimethylaluminum (TMA) and water. The thermodynamic products of these reactions are methylaluminoxanes (MAOs) with different compositions, which have the general formula (AlOMe)n(AlMe3)m, in which n describes the degree of oligomerization and m is the number of associated TMA molecules. These reaction products were thoroughly explored up to n=4, thus demonstrating the thermodynamically preferable association of up to four AlMe3 molecules, that is, TMA molecules in their monomeric form. The relative Lewis acidities of the Al sites in these MAOs were systematically explored and we found that the associated TMA molecules were a key ingredient for co‐catalytic activity in olefin‐polymerization catalysis. This conclusion was supported by computational studies on catalyst activation, which revealed an exergonic insertion of ethene into the metallocene/MAO complex.  相似文献   

3.
A simple and rapid LC method has been developed for the determination of coumarin 3-acyl derivatives synthesized and assayed for their inhibitory activity against monoamine oxidases (MAOs). The proposed liquid chromatography method can be used satisfactorily for the purity control of the synthesized compounds and can also be used to study the stability of these potentially reactive compounds. Moreover using this method it has been possible to elucidate the mechanism of MAO inhibition by direct determination of the biochemical reaction mixture.  相似文献   

4.
Obesity is the most common nutritional disorder in the developed world and is associated with important comorbidities. Pancreatic lipase (PL) inhibitors play a key role in the metabolism of human fat. A series of novel epoxyketones peptide derivatives were investigated for their pancreatic lipase inhibitory activity. The epoxyketone moiety is a well-known reactive electrophile group that has been used as part of proteasome inhibitors in cancer therapy, and it is widely believed that these are very selective for targeting the proteasome active site. Here we investigated various peptide derivatives with an epoxide warhead for their anti-lipase activity. The assessment of these novel epoxyketones was performed by an in-house method that we developed for rapid screening and identification of lipase inhibitors using GC-FID. Herein, we present a novel anti-lipase pharmacophore based on epoxyketone peptide derivatives that showed potent anti-lipase activity. Many of these derivatives had comparable or more potent activity than the clinically used lipase inhibitors such as orlistat. In addition, the lipase appears to be inhibited by a wide range of epoxyketone analogues regardless of the configuration of the epoxide in the epoxyketone moiety. The presented data in this study shows the first example of the use of epoxyketone peptides as novel lipase inhibitors.  相似文献   

5.
Poly (ADP-ribose) polymerase (PARP1) is a nuclear protein that, when overactivated by oxidative stress-induced DNA damage, ADP ribosylates target proteins leading to dramatic cellular ATP depletion. We have discovered a biologically active small-molecule inhibitor of PARP1. The discovered compound inhibited PARP1 enzymatic activity in vitro and prevented ATP loss and cell death in a surrogate model of oxidative stress in vivo. We also investigated a new use for PARP1 inhibitors in energy-deficient cells by using Huntington's disease as a model. Our results showed that insult with the oxidant hydrogen peroxide depleted cellular ATP in mutant cells below the threshold of viability. The protective role of PARP1 inhibitors against oxidative stress has been shown in this model system.  相似文献   

6.
Xanthine oxidase (XO) is a key enzyme in purine metabolism with an important role in various pathologies. Several flavonoids have been reported for their capacity to inhibit this enzyme, and, for these compounds, the ability to adopt a planar 3D structure has been accepted as fundamental prerequisite for such activity. Here we report the in vitro investigation of a series of non-planar protoflavone derivatives as XO inhibitors, among which protoapigenone 1′-O-propargyl ether was found to be an efficient competitive inhibitor of the enzyme with an IC50 value of 3.61 μM, significantly (p <0.001) stronger than the anti-gout drug allopurinol (IC50 = 8.72 μM). Methoxy substitution at C-7, however, resulted in complete loss of activity. In silico docking supported the observed structure–activity relationships, based on which a ‘planar structure’ itself can no longer be considered as a criterion for flavonoid-type inhibitors of XO.  相似文献   

7.
Chalcones targeting neurodegenerative diseases have been known as attractive structures in drug design and discovery. In this study, phenothiazine-based chalcones as ChEs and MAOs inhibitors were designed and synthesized via base-catalyzed Claisen-Schmidt condensation, and chemical structures of the compounds were elucidated by NMRs and HRMS. Compounds 3 and 9 showed promising inhibition potency against AChE enzyme with IC50 values of 0.221 μM and 0.053 μM while compound 9 displayed remarkable inhibition potency toward MAO-B enzyme with IC50 value of 0.048 μM. Compound 9 , as a dual-target inhibitor, selectively inhibited AChE and MAO-B enzymes. This promising behavior is an advantage for the compound since MAO-B and AChE inhibition have a role in Alzheimer's disease. Fused tricyclic ring systems such as phenothiazine incorporated with chalcone moiety being multitargeting ligands may help scientists for the rational design of novel lead compounds targeting neurodegenerative illnesses.  相似文献   

8.
Trypanothione reductase (TR) catalyzes the NAPDH-dependent reduction of the spermidine-glutathione conjugate trypanothione, an antioxidant found in Trypanosomatid parasites. TR plays an essential role in the parasite's defense against oxidative stress and has emerged as a prime target for drug development. Here we report the synthesis of several trypanothione analogues and their inhibitory effects on T. cruzi TR. All are competitive inhibitors with K(i) values ranging from 30 to 91 microM.  相似文献   

9.
《中国化学快报》2020,31(6):1357-1365
With the emergence of multidrug-resistant tuberculosis and extensive drug-resistant tuberculosis strains,there is an urgent need to develop novel drugs for the treatment of tuberculosis.The respiratory chain is a promising target for the development of newantimycobacterial agents,and a growing number of compounds have been reported and some have entered clinical trials.In this review,we summarize the main features and the electron transfer process of the mycobacterial respiratory chain,and the recent progress in the search for new small molecule inhibitors to rgeting the three main potential targets in the respiratory chain of Mycrobacterium tuberculosis.Our emphasis is on the optimization strategy of QcrB inhibitors and the challenges of developing QcrB inhibitors as antituberculosis drugs due to the alternate bd-type oxidase oxidative compensation pathway are discussed.  相似文献   

10.
The synthesis of a series of stereochemically defined spirocyclic compounds and their use as novel P2-ligands for HIV-1 protease inhibitors are described. The bicyclic core of the ligands was synthesized by an efficient nBu 3SnH-promoted radical cyclization of a 1,6-enyne followed by oxidative cleavage. Structure-based design, synthesis of ligands, and biological evaluations of the resulting inhibitors are reported.  相似文献   

11.
DPP-IV inhibitors have been immersed as promising pathway to treat Type 2 diabetes. Here we have reported designing of coumarin derivatives as DPP-IV inhibitors. Designed compounds have been studied for their binding with DPP-IV enzyme through molecular docking followed by synthesis. All synthesized compounds have been fully characterized and screened for DPP-IV inhibition activity. Two compounds showed very good inhibition at 10 μM concentration.  相似文献   

12.
Environmental stimuli attack the skin daily resulting in the generation of reactive oxygen species (ROS) and inflammation. One pathway that regulates oxidative stress in skin involves Protein Phosphatase 2A (PP2A), a phosphatase which has been previously linked to Alzheimer’s Disease and aging. Oxidative stress decreases PP2A methylation in normal human dermal fibroblasts (NHDFs). Thus, we hypothesize agents that increase PP2A methylation and activity will promote skin health and combat aging. To discover novel inhibitors of PP2A demethylation activity, we screened a library of 32 natural botanical extracts. We discovered Grape Seed Extract (GSE), which has previously been reported to have several benefits for skin, to be the most potent PP2A demethylating extract. Via several fractionation and extraction steps we developed a novel grape seed extract called Activated Grape Seed Extract (AGSE), which is enriched for PP2A activating flavonoids that increase potency in preventing PP2A demethylation when compared to commercial GSE. We then determined that 1% AGSE and 1% commercial GSE exhibit distinct gene expression profiles when topically applied to a 3D human skin model. To begin to characterize AGSE’s activity, we investigated its antioxidant potential and demonstrate it reduces ROS levels in NHDFs and cell-free assays equal to or better than Vitamin C and E. Moreover, AGSE shows anti-inflammatory properties, dose-dependently inhibiting UVA, UVB and chemical-induced inflammation. These results demonstrate AGSE is a novel, multi-functional extract that modulates methylation levels of PP2A and supports the hypothesis of PP2A as a master regulator for oxidative stress signaling and aging in skin.  相似文献   

13.
Antioxidants in Chinese herbal medicines: a biochemical perspective   总被引:1,自引:0,他引:1  
Recently, intense interest has focused on the antioxidant properties of natural products. In particular, Chinese herbal medicines (CHM) have become hot topics for life science researchers since many are reported to possess cardioprotective compounds, many of which remain to be identified. Indeed, the exact mechanisms by which CHM work remain unknown. Although many of these herbal remedies are undoubtedly efficacious, few have been scientifically investigated for their active chemical constituents and biological activities. We have previously reported higher activities of antioxidant defence enzymes such as superoxide dismutase, catalase, glutathione peroxidase and glutathione S-transferases in the liver of rats treated with the herb Salvia miltiorrhiza in a model of acute myocardial infarction. Using well established in vitro antioxidant assays employing 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and diphenyl-l-picrylhydrazyl (DPPH) we have shown that in addition to elevating endogenous antioxidant enzyme activity, Salvia miltiorrhiza and other CHM traditionally used for cardiovascular disorders (such as Rhizoma ligustici, Herba leonuri, Radix achyranthis bidentatae, and Camellia sinensis) contain potent antioxidant moieties in addition to their phenolic constituents. Furthermore, these novel non-phenolic components are effective inhibitors of oxidative reactions mediated by the inflammatory oxidants, peroxynitrite,hypochlorous acid and hydroxyl radical as well as iron-dependent lipid peroxidation. In this review, we discuss the various antioxidant properties of CHM in the context of their biochemical mechanisms.  相似文献   

14.
Mechanism-of-action (MOA) studies of bioactive compounds are fundamental to drug discovery. However, in vitro studies alone may not recapitulate a compound's MOA in whole cells. Here, we apply a chemogenomics approach in Candida albicans to evaluate compounds affecting purine metabolism. They include the IMP dehydrogenase inhibitors mycophenolic acid and mizoribine and the previously reported GMP synthase inhibitors acivicin and 6-diazo-5-oxo-L-norleucine (DON). We report important aspects of their whole-cell activity, including their primary target, off-target activity, and drug metabolism. Further, we describe ECC1385, an inhibitor of GMP synthase, and provide biochemical and genetic evidence supporting its MOA to be distinct from acivicin or DON. Importantly, GMP synthase activity is conditionally essential in C. albicans and Aspergillus fumigatus and is required for virulence of both pathogens, thus constituting an unexpected antifungal target.  相似文献   

15.
Human neutrophil elastase (HNE) is a uniquely destructive serine protease with the ability to unleash a wave of proteolytic activity by destroying the inhibitors of other proteases. Although this phenomenon forms an important part of the innate immune response to invading pathogens, it is responsible for the collateral host tissue damage observed in chronic conditions such as chronic obstructive pulmonary disease (COPD), and in more acute disorders such as the lung injuries associated with COVID-19 infection. Previously, a combinatorially selected activity-based probe revealed an unexpected substrate preference for oxidised methionine, which suggests a link to oxidative pathogen clearance by neutrophils. Here we use oxidised model substrates and inhibitors to confirm this observation and to show that neutrophil elastase is specifically selective for the di-oxygenated methionine sulfone rather than the mono-oxygenated methionine sulfoxide. We also posit a critical role for ordered solvent in the mechanism of HNE discrimination between the two oxidised forms methionine residue. Preference for the sulfone form of oxidised methionine is especially significant. While both host and pathogens have the ability to reduce methionine sulfoxide back to methionine, a biological pathway to reduce methionine sulfone is not known. Taken together, these data suggest that the oxidative activity of neutrophils may create rapidly cleaved elastase “super substrates” that directly damage tissue, while initiating a cycle of neutrophil oxidation that increases elastase tissue damage and further neutrophil recruitment.  相似文献   

16.
The small molecule blebbistatin is now a front line tool in the study of myosin function. Chemical modification of the tricyclic core of blebbistatin could deliver the next generation of myosin inhibitors and to help address this we report here on the impact of structural changes in the methyl-substituted aromatic ring of blebbistatin on its biological activity. Chemical methods for the preparation of isomeric methyl-containing analogues are reported and a series of co-crystal structures are used to rationalise the observed variations in their biological activity. These studies further support the view that the previously identified binding mode of blebbistatin to Dictyostelium discoideum myosin II is of relevance to its mode of action. A discussion of the role that these observations have on planning the synthesis of focused libraries of blebbistatin analogues is also provided including an assessment of possibilities by computational methods. These studies are ultimately directed at the development of novel myosin inhibitors with improved affinity and different selectivity profiles from blebbistatin itself.  相似文献   

17.
Pyrazole has been recognized as a pharmacologically important privileged scaffold whose derivatives produce almost all types of pharmacological activities and have attracted much attention in the last decades. Of the various pyrazole derivatives reported as potential therapeutic agents, this article focuses on pyrazole-based kinase inhibitors. Pyrazole-possessing kinase inhibitors play a crucial role in various disease areas, especially in many cancer types such as lymphoma, breast cancer, melanoma, cervical cancer, and others in addition to inflammation and neurodegenerative disorders. In this article, we reviewed the structural and biological characteristics of the pyrazole derivatives recently reported as kinase inhibitors and classified them according to their target kinases in a chronological order. We reviewed the reports including pyrazole derivatives as kinase inhibitors published during the past decade (2011–2020).  相似文献   

18.
19.
The enzyme xanthine oxidase (XOD) has been recognized as a key enzyme causing oxidative injury to tissues by ischemia-reperfusion. For this reason, XOD inhibitor, which effectively suppresses this enzyme, plays an important role in the inhibition of many diseases related to reactive oxygen species (ROS). In order to screen XOD inhibitors rapidly and conveniently, a novel assay using flow injection analysis (FIA) was proposed in the present investigation. To optimize the practical FIA system, we studied the effect of the reagent concentrations and the flow condition on the enzymatic reaction, and then selected the optimum condition as follows: 200-mU/ml XOD concentration, 0.5-mM xanthine concentration, 0.5-ml/min flow rate, and 2-m mixing coil length. Under this condition, a typical XOD inhibitor quercetin was determined in the concentration range 0.1 - 1.5 mM at a sampling frequency of 10 samples/h. Using the optimized FIA method, we determined the XOD inhibitory activity of some food samples: onions, apples and teas, which are the high sources of flavonoids known as the potential XOD inhibitors. Among these samples, tea leaves showed the highest activity, the second was onions and the lowest was apples. Based on the result of the assay, not only quercetin, but also other components in investigated samples, contributed to the XOD inhibitory activity.  相似文献   

20.
The main proteinase (M(pro)) of the severe acute respiratory syndrome (SARS) coronavirus is a principal target for the design of anticoronaviral compounds. Benzotriazole esters have been reported as potent nonpeptidic inhibitors of the enzyme, but their exact mechanism of action remains unclear. Here we present crystal structures of SARS-CoV M(pro), the active-site cysteine of which has been acylated by benzotriazole esters that act as suicide inhibitors. In one of the structures, the thioester product has been hydrolyzed and benzoic acid is observed to bind to the hydrophobic S2 pocket. This structure also features the enzyme with a shortened N-terminal segment ("amputated N finger"). The results further the understanding of the important role of the N finger for catalysis as well as the design of benzotriazole inhibitors with improved specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号