共查询到4条相似文献,搜索用时 0 毫秒
1.
Josipa Vlaini Ozren Jovi Ivan Kosalec Oliver Vugrek Rozelindra o-Rakovac Tomislav muc 《Molecules (Basel, Switzerland)》2021,26(12)
The limited number of medicinal products available to treat of fungal infections makes control of fungal pathogens problematic, especially since the number of fungal resistance incidents increases. Given the high costs and slow development of new antifungal treatment options, repurposing of already known compounds is one of the proposed strategies. The objective of this study was to perform in vitro experimental tests of already identified lead compounds in our previous in silico drug repurposing study, which had been conducted on the known Drugbank database using a seven-step procedure which includes machine learning and molecular docking. This study identifies siramesine as a novel antifungal agent. This novel indication was confirmed through in vitro testing using several yeast species and one mold. The results showed susceptibility of Candida species to siramesine with MIC at concentration 12.5 µg/mL, whereas other candidates had no antifungal activity. Siramesine was also effective against in vitro biofilm formation and already formed biofilm was reduced following 24 h treatment with a MBEC range of 50–62.5 µg/mL. Siramesine is involved in modulation of ergosterol biosynthesis in vitro, which indicates it is a potential target for its antifungal activity. This implicates the possibility of siramesine repurposing, especially since there are already published data about nontoxicity. Following our in vitro results, we provide additional in depth in silico analysis of siramesine and compounds structurally similar to siramesine, providing an extended lead set for further preclinical and clinical investigation, which is needed to clearly define molecular targets and to elucidate its in vivo effectiveness as well. 相似文献
2.
Carolina Zapata-Zapata Manuela Loaiza-Oliva María C. Martínez-Pabn Elena E. Stashenko Ana C. Mesa-Arango 《Molecules (Basel, Switzerland)》2022,27(20)
Multi-drug resistant species such as Candida auris are a global health threat. This scenario has highlighted the need to search for antifungal alternatives. Essential oils (EOs), or some of their major compounds, could be a source of new antifungal molecules. The aim of this study was to evaluate the in vitro activity of EOs and some terpenes against C. auris and other Candida spp. The eleven EOs evaluated were obtained by hydro-distillation from different Colombian plants and the terpenes were purchased. EO chemical compositions were obtained by gas chromatography/mass spectrometry (GC/MS). Antifungal activity was evaluated following the CLSI standard M27, 4th Edition. Cytotoxicity was tested on the HaCaT cell line and fungal growth kinetics were tested by time–kill assays. Candida spp. showed different susceptibility to antifungals and the activity of EOs and terpenes was strain-dependent. The Lippia origanoides (thymol + p-cymene) chemotype EO, thymol, carvacrol, and limonene were the most active, mainly against drug-resistant strains. The most active EOs and terpenes were also slightly cytotoxic on the HaCaT cells. The findings of this study suggest that some EOs and commercial terpenes can be a source for the development of new anti-Candida products and aid the identification of new antifungal targets or action mechanisms. 相似文献
3.
The occurrence of candidiasis, including superficial infections, has recently increased dramatically, especially in immunocompromised patients. Their treatment is often ineffective due to the resistance of yeasts to antimycotics. Therefore, there is a need to search for new antifungals. The aim of this study was to determine the antifungal effect of clove essential oil (CEO) and eugenol (EUG) towards both reference and clinical Candida spp. strains isolated from the oral cavity of patients with hematological malignancies, and to investigate their mode of action and the interactions in combination with the selected antimycotics. These studies were performed using the broth microdilution method, tests with sorbitol and ergosterol, and a checkerboard technique, respectively. The CEO and EUG showed activity against all Candida strains with a minimal inhibitory concentration (MIC) in the range of 0.25–2 mg/mL. It was also found that both natural products bind to ergosterol in the yeast cell membrane. Moreover, the interactions between CEO and EUG with several antimycotics—cetylpyridinium chloride, chlorhexidine, silver nitrate and triclosan—showed synergistic or additive effects in combination, except nystatin. This study confirms that the studied compounds appear to be a very promising group of phytopharmaceuticals used topically in the treatment of superficial candidiasis. However, this requires further studies in vivo. 相似文献
4.
Yin Zheng Yanhong Shang Mengyun Li Yunzhou Li Wuqing Ouyang 《Molecules (Basel, Switzerland)》2021,26(14)
Trichophyton rubrum causes ringworm worldwide. Citral (CIT), extracted from Pectis plants, is a monoterpene and naturally composed of geometric isomers neral (cis-citral) and geranial (trans-citral). CIT has promising antifungal activities and ergosterol biosynthesis inhibition effects against several pathogenic fungi. However, no study has focused on neral and geranial against T. rubrum, which hinders the clinical application of CIT. This study aimed to compare antifungal activities of neral and geranial and preliminarily elucidate their ergosterol biosynthesis inhibition mechanism against T. rubrum. Herein, the disc diffusion assays, cellular leakage measurement, flow cytometry, SEM/TEM observation, sterol quantification, and sterol pattern change analyses were employed. The results showed geranial exhibited larger inhibition zones (p < 0.01 or 0.05), higher cellular leakage rates (p < 0.01), increased conidia with damaged membranes (p < 0.01) within 24 h, more distinct shriveled mycelium in SEM, prominent cellular material leakage, membrane damage, and morphological changes in TEM. Furthermore, geranial possessed more promising ergosterol biosynthesis inhibition effects than neral, and both induced the synthesis of 7-Dehydrodesmosterol and Cholesta-5,7,22,24-tetraen-3β-ol, which represented marker sterols when ERG6 was affected. These results suggest geranial is more potent than neral against T. rubrum, and both inhibit ergosterol biosynthesis by affecting ERG6. 相似文献