首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two new tungsten coil spectrometers are described: a continuum source tungsten coil atomic absorption spectrometer and a tungsten coil atomic emission spectrometer. Both devices use a 150 W tungsten coil extracted from a slide projector bulb. The power is provided by a computer-controlled, solid state, constant current 0–10 A supply. The heart of the optical system is a high-resolution spectrometer with a multi-channel detector. The continuum source system employs xenon or deuterium lamps, and is capable of multi-element analyses of complex samples like engine oil, urine, and polluted water. Spiked engine oil samples give mean percent recoveries of 98 ± 9, 104 ± 9, and 93 ± 0.8 for Al, V, and Ni, respectively. Copper, Zn, and Cd are determined in urine samples; while Cd, Co, Yb, and Sr are determined in water samples. Detection limits for Cd, Zn, Cu, Yb, Sr, and Co are: 8, 40, 1, 4, 1, and 4 μg l 1. The technique of tungsten coil atomic emission spectrometry using a 150 W commercial projector bulb is reported for the first time. Calcium, Ba, and Sr are determined with detection limits of 0.01, 0.5, and 0.1 μg l 1. Relative standard deviations are lower than 10% in each case, and Sr is determined in two water standard reference materials.  相似文献   

2.
A simultaneous, multielement atomic absorption spectrometer utilizing a graphite furnace atomizer was constructed and evaluated. The optical arrangement employs a concave grating to combine the spectral output from a deuterium lamp and four hollow cathode lamps that are placed on the perimeter of a Rowland Circle. A graphite furnace atomizer is positioned on the circle at the point of convergence of the five light sources. Background correction is performed by the continuum source method. Simultaneous detection of the analyte absorption signals is accomplished with a charged-coupled device. Four test elements were used for evaluation purposes: cadmium, lead, copper and chromium. Even though the elements differ greatly in volatility, the detection limits approach the values published for single element GFAAS: 4, 12, 14 and 12 pg for Cd, Pb, Cu and Cr, respectively. The characteristic masses (integrated absorbance) for the four metals are 3, 24, 14 and 7 pg, respectively. Three drinking water reference materials are analyzed: NIST SRM #1643b (Trace Elements in Water), Fisher Scientific “Metals Drinking Water Standard,” and High Purity Standards “Drinking Water Metals Solution A and B”. The determined amounts were within 10% of the certified values for each of the four elements for all three reference materials.  相似文献   

3.
Volatile Ag species were generated in flow injection arrangement from nitric acid environment in the presence of surfactants (Triton X-100 and Antifoam B) and permanent Pd deposits as the reaction modifiers. Atomic absorption spectrometry (AAS) with multiple microflame quartz tube atomizer heated to 900 °C was used for atomization; evidence was found for thermal mechanism of atomization. Relative and absolute limits of detection (3σ, 250 μl sample loop) measured under optimized conditions were: 1.4 μg l? 1 and 0.35 ng, respectively.The efficiency of chemical vapor generation (CVG) as well as spatial distribution of residual analyte in the apparatus was studied by 111Ag radioactive indicator (half-life 7.45 days) of high specific activity. It was found out that 23% of analyte was released into the gaseous phase. However, only 8% was found on filters placed at the entrance to the atomizer due to transport losses. About 40% of analyte remained in waste liquid, whereas the rest was found deposited over the CVG system.Presented study follows the hypothesis that the “volatile” Ag species are actually metallic nanoparticles formed upon reduction in liquid phase and then released with good efficiency to the gaseous phase. Number/charge size distributions of dry aerosol were determined by Scanning Mobility Particle Sizer. Ag was detected in 40–45 nm particles holding 10 times more charge if compared to Boltzmann equilibrium. At the same time, Ag was also present on 150 nm particles, the main size mode of the CVG generator. The increase of Ag in standards was reflected by proportional increase in particle number/charge for 40–45 nm size particles only.Transmission electron microscopy revealed particles of 8 ± 2 nm sampled from the gaseous phase, which were associated in isolated clusters of few to few tens of nanometres. Ag presence in those particles was confirmed by Energy Dispersive X-ray Spectroscopy (EDS) analysis.  相似文献   

4.
A new and complete GC–ICP-MS method is described for direct analysis of trace metals in a gas phase process stream. The proposed method is derived from standard analytical procedures developed for ICP-MS, which are regularly exercised in standard ICP-MS laboratories. In order to implement the method, a series of empirical factors were generated to calibrate detector response with respect to a known concentration of an internal standard analyte. Calibrated responses are ultimately used to determine the concentration of metal analytes in a gas stream using a semi-quantitative algorithm. The method was verified using a traditional gas injection from a GC sampling valve and a standard gas mixture containing either a 1 ppm Xe + Kr mix with helium balance or 100 ppm Xe with helium balance. Data collected for Xe and Kr gas analytes revealed that agreement of 6–20% with the actual concentration can be expected for various experimental conditions.To demonstrate the method using a relevant “unknown” gas mixture, experiments were performed for continuous 4 and 7 hour periods using a Hg-containing sample gas that was co-introduced into the GC sample loop with the xenon gas standard. System performance and detector response to the dilute concentration of the internal standard were pre-determined, which allowed semi-quantitative evaluation of the analyte. The calculated analyte concentrations varied during the course of the 4 hour experiment, particularly during the first hour of the analysis where the actual Hg concentration was under predicted by up to 72%. Calculated concentration improved to within 30–60% for data collected after the first hour of the experiment. Similar results were seen during the 7 hour test with the deviation from the actual concentration being 11–81% during the first hour and then decreasing for the remaining period. The method detection limit (MDL) was determined for the mercury by injecting the sample gas into the system following a period of equilibration. The MDL for Hg was calculated as 6.8 μg · m 3. This work describes the first complete GC–ICP-MS method to directly analyze gas phase samples, and detailed sample calculations and comparisons to conventional ICP-MS methods are provided.  相似文献   

5.
An evaluation of an extremely simple method for antimony preconcentration based on the novel experimental approach, in situ trapping of stibine in externally heated quartz tube atomizers, is presented. The only difference to the set-up employed for the conventional operation mode is that a flow of oxygen (at stoichiometric excess over hydrogen) is introduced just upstream of the atomizer in the trapping step of the procedure. The volatilization of the trapped analyte can be performed just by switching off the oxygen inlet. The collection/volatilization efficiency (± S.D.) is 100 ± 2%. For the collection time of 300 s (sample volume of 20 ml), the preconcentration ratio and detection limit (3σ), respectively, is 400 and 2.8 pg ml 1. A possible way of further improvement of the detection limit is suggested. The same approach can be analytically useful also for bismuthine (efficiency 55 ± 2%) but not for arsine, selenium hydride and tellurium hydride.  相似文献   

6.
A tungsten–rhodium coating on the integrated platform of a transversely heated graphite atomizer is proposed as a permanent chemical modifier for the determination of Cd, Pb, and Se by electrothermal atomic absorption spectrometry. It was demonstrated that coating with 250 μg W+200 μg Rh is as efficient as the conventional Mg(NO3)2+NH4H2PO4 or Pd+Mg(NO3)2 modifiers for avoiding most serious interferences. The permanent W–Rh modifier remains stable for 300–350 firings of the furnace, and increases tube lifetime by 50%–100% when compared to pyrolytic carbon integrated platforms. Also, there is less degradation of sensitivity during the atomizer lifetime when compared with the conventional modifiers, resulting in a decreased need of re-calibration during routine analysis. The characteristic masses and detection limits achieved using the permanent modifier were respectively: Cd 1.1±0.4 pg and 0.020 μgL−1; Pb 30±3 pg and 0.58 μgL−1 and Se 42±5 pg and 0.64μgL−1. Results from the determination of these elements in water reference materials were in agreement with the certified values, since no statistical differences were found by the paired t-test at the 95% level.  相似文献   

7.
The tungsten plasma flash X-ray generator is useful in order to perform high-speed enhanced K-edge angiography using cone beams because K-series characteristic X-rays from the tungsten target are absorbed effectively by gadolinium-based contrast media. In the flash X-ray generator, a 150 nF condenser is charged up to 80 kV by a power supply, and flash X-rays are produced by the discharging. The X-ray tube is a demountable diode, and the turbomolecular pump evacuates air from the tube with a pressure of approximately 1 mPa. Since the electric circuit of the high-voltage pulse generator employs a cable transmission line, the high-voltage pulse generator produces twice the potential of the condenser charging voltage. At a charging voltage of 80 kV, the estimated maximum tube voltage and current were approximately 160 kV and 40 kA, respectively. When the charging voltage was increased, the characteristic X-ray intensities of tungsten Kα lines increased. The Kα lines were clean, and hardly any bremsstrahlung rays were detected. The X-ray pulse widths were approximately 110 ns, and the time-integrated X-ray intensity had a value of approximately 0.35 mGy at 1.0 m from the X-ray source with a charging voltage of 80 kV. Angiography was performed using a film-less computed radiography (CR) system and gadolinium-based contrast media. In angiography of non-living animals, we observed fine blood vessels of approximately 100 μm with high contrasts.  相似文献   

8.
A novel approach for sequential injection-dispersive liquid–liquid microextraction (SI-DLLME) has been suggested. The method is based on the aspiration and mixing of a sample and all required aqueous reagents in the holding coil of an SIA system, delivering it into a conical tube and adding in a mixture of extraction solvent, auxiliary solvent and disperser solvent at high flow rate, resulting in the formation of a cloudy state and the extraction of an analyte. The mixture of extraction and auxiliary solvent is immiscible with water and has a density significantly higher than that of water; consequently, the resulting fine droplets in the mixture, which contain the extracted analyte, are self-sedimented in a short time at the bottom of conical tube. Thus, no centrifugation and no use of a microcolumn are required for separation of the extraction phase. Afterwards, the extracted analyte is aspirated and transferred to a micro-volume Z-flow cell, and the absorbance is measured.The performance of the suggested approach is demonstrated by the SI-DLLME of thiocyanate ions in the form of ion associate with dimethylindocarbocyanine reagent, followed by spectrophotometric detection. A mixture of amyl acetate (as extraction solvent), tetrachloromethane (as auxiliary solvent) and acetonitrile (as disperser solvent) was selected for the DLLME procedure. The appropriate experimental conditions for conventional DLLME and automated SI-DLLME were investigated. The analytical performance of both these procedures was compared. The absorbance of the colored extracts at wavelength 555 nm obeys Beer's law in the range of 3.13–28.2 for conventional DLLME and 0.29–5.81 mg L? 1 of SCN for SI-DLLME, and the limit of detection, calculated from a blank test based on 3 s, is 0.110 for conventional DLLME and 0.017 mg L? 1 for SI-DLLME.  相似文献   

9.
A slurry sampling electrothermal atomic absorption spectrometry method for the determination of Al, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, Tl and Zn in powdered titanium dioxide is described. The behaviour of the titanium matrix in the atomizer and its interferences with the determination of Al, Fe, Co, Ni and Mn were studied. A tungsten carbide modified graphite tube was used to improve the signal shape and the repeatability for the determination of Fe. For all elements, except for Cd and Pb, quantification by a calibration curve established with aqueous standards was possible. No chemical modifier was used throughout in order to minimize contamination. For the contamination risk elements such as Ca, Fe, K, Mg, Na and Zn, the slurry sampling technique allows to achieve limits of detection (3σ of the blank) 5–20 times lower than the solution technique, resulting for these elements in values of 1, 3, 0.5, 0.5, 0.9 and 2 ng g−1, respectively, and, generally being in the range of 0.2 ng g−1 (Cd) to 10 ng g−1 (Al and Tl). The results obtained by the slurry sampling technique are compared with those of other independent methods including four solution methods and neutron activation analysis.  相似文献   

10.
In this work, tungsten coil (W-Coil) devices are used as atomizers for electrothermal atomization atomic absorption spectrometry (ETAAS), electrothermal atomization laser excited atomic fluorescence spectrometry (ETA-LEAFS), and electrothermal vaporization inductively coupled plasma atomic emission spectrometry (ETV-ICP-AES). For most cases in ETAAS and ETA-LEAFS, limits of detection (LODs) using the W-Coil are within a factor of ten of those observed with commercial graphite furnace systems. LOD for Cd by W-Coil AAS is 10 pg, while LODs for As, Se, Cr, Sb and Pb by W-Coil LEAFS are 950, 320, 1400, 330, and 160 fg, respectively. The compact W-Coil device makes it an ideal atomizer for portable atomic spectrometry instrumentation, especially when coupled with a miniature charge coupled device spectrometer. Alternatively, the atomizer can be used as an inexpensive, modular add-on to an existing commercial ICP-AES system; and the thermal separation of Pb with interference elements Al, Mn, and Fe is demonstrated.  相似文献   

11.
A new approach to performing extraction and preconcentration employing functionalized magnetic nanoparticles for the determination of trace metals is presented. Alumina-coated iron oxide nanoparticles were synthesized and used as the solid support. The nanoparticles were functionalized with sodium dodecyl sulfate and used as adsorbents for solid phase extraction of the analyte. Extraction, elution, and detection procedures were performed sequentially in the sequential injection lab-on-valve (SI-LOV) system followed by electrothermal atomic absorption spectrometry (ETAAS). Mixtures of hydrophobic analytes were successfully extracted from solution using the synthesized magnetic adsorbents. The potential use of the established scheme was demonstrated by taking cobalt as a model analyte. Under the optimal conditions, the calibration curve showed an excellent linearity in the concentration range of 0.01–5 μg L?1, and the relative standard deviation was 2.8% at the 0.5 μg L?1 level (n = 11). The limit of detection was 6 ng L?1 with a sampling frequency of 18 h?1. The present method has been successfully applied to cobalt determination in water samples and two certified reference materials.  相似文献   

12.
A simple and inexpensive laboratory-built flow injection vapor generation system coupled to atomic absorption spectrometry (FI-VG AAS) for inorganic and total mercury determination has been developed. It is based on the vapor generation of total mercury and a selective detection of Hg2 + or total mercury by varying the temperature of the measurement cell. Only the inorganic mercury is measured when the quartz cell is at room temperature, and when the cell is heated to 650 °C or higher the total Hg concentration is measured. The organic Hg concentration in the sample is calculated from the difference between the total Hg and Hg2 + concentrations. Parameters such as the type of acid (HCl or HNO3) and its concentration, reductant (NaBH4) concentration, carrier solution (HCl) flow rate, carrier gas flow rate, sample volume and quartz cell temperature, which influence FI-VG AAS system performance, were systematically investigated. The optimized conditions for Hg2 + and total Hg determinations were: 1.0 mol l 1 HCl as carrier solution, carrier flow rate of 3.5 ml min 1, 0.1% (m/v) NaBH4, reductant flow rate of 1.0 ml min 1 and carrier gas flow rate of 200 ml min 1. The relative standard deviation (RSD) is lower than 5.0% for a 1.0 μg l 1 Hg solution and the limit of quantification (LOQ, 10 s) is 55 ng g 1. Certified samples of dogfish muscle (DORM-1 and DORM-2) and non-certified fish samples were analyzed, using a 6.0 mol l 1 HCl solution for analyte extraction. The Hg2 + and CH3Hg+ concentrations found were in agreement with certified ones.  相似文献   

13.
A flow injection system was coupled to a tungsten coil electrothermal atomizer (150 W) for on-line separation and preconcentration of lead based on its electrochemical reduction on the atomizer surface. The electrochemical cell is built up inside the furnace by using a Pt flow-through anode and the atomizer itself as the flow-through cathode. The manifold and the tungsten coil power supply were controlled by a computer running a program written in Visual Basic, which was utilized in synchronism with the original software of the atomic absorption spectrometer. The flow-through anode (50 mm long, 0.7 mm i.d.) was inserted in tip of the autosampler arm by replacing the last section of the PTFE sample delivering tube. The tungsten coil atomizer and the counter electrode were easily connected to a d.c. power supply. An enrichment factor of 25 was obtained for lead after a 120-s electrodeposition for a sample flowing at 1.0 ml min−1. The method detection limit was 0.2 μg l−1 Pb and the R.S.D.<5% (n=10 for 5 μg l−1 Pb). Up to 2% m/v NaCl or KCl and 5% m/v CaCl2 or MgCl2 did not interfere on the separation and atomization of 5 μg l−1 Pb.  相似文献   

14.
The photolysis of glyoxal in synthetic air was investigated in a quartz cell at 298 K using three types of UV sources (TL/12 lamps (275–380 nm), TL/03 lamps (390–470 nm) and mercury lamps (254 nm)) and products were identified and quantitatively analyzed using long-path FTIR spectroscopy. For all light sources, the observed products were CO, HCHO and HCOOH. Absolute quantum yields were determined using Cl2 and Br2 as actinometers. Photolysis in the first absorption band of glyoxal, using TL/12 lamps, provided an overall quantum yield of ΦT = 0.97 ± 0.05, independent of total pressure ranging from 100 to 700 Torr air. The absolute quantum yields obtained with the TL/03 lamps, covering the second absorption band of glyoxal, showed dependency on total pressure, ranging from ΦT = 0.12 at 100 Torr to ΦT = 0.042 at 700 Torr, which can be expressed as a Stern–Volmer-type equation 1/ΦT = (6.80 + 251.8) × 10−4 × P (Torr).By combining the product yields with literature data, we deduced the detailed picture of glyoxal photolysis, including the dependency of the quantum yield of each particular channel: CHOCHO +   2HCO (Φ1); CHOCHO +   H2 + 2CO (Φ2); CHOCHO +   H2CO + CO (Φ3) on the applied wavelength. The product quantum yields indicate that dissociation into two HCO radicals is the most important pathway under atmospheric conditions. The mean photolysis rate was measured under solar radiation in the EUPHORE outdoor chamber to be Jobs = 1.04 ± 0.10 × 10−4 s−1, corresponding to a mean effective quantum yield ϕeff = 0.035 ± 0.007. Although glyoxal has a very low effective quantum yield, photolysis remains an important removal path in the atmosphere.  相似文献   

15.
Wu P  Wen X  He L  He Y  Chen M  Hou X 《Talanta》2008,74(4):505-511
A tungsten coil electrothermal vaporizer (W-coil ETV) was coupled to an Ar/H(2) flame atomic fluorescence spectrometer for the determination of eight traditional hydride-forming elements (i.e., As, Bi, Ge, Pb, Sb, Se, Sn, and Te) as well as cadmium without chemical vapor generation. A small sample volume, typically 20muL, was manually pipetted onto the W-coil and followed by a fixed electric heating program. During the vaporization step, analyte was vaporized off the coil surface and swept into the quartz tube atomizer of AFS for further atomization and excitation of atomic fluorescence by a flow of Ar/H(2) gas, which was ignited to produce the Ar/H(2) flame. The tungsten coil electrothermal vaporizer and Ar/H(2) flame formed a tandem atomizer to produce reliable atomic fluorescence signals. Under the optimal instrumental conditions, limits of detection (LODs) were found to be better than those by flame atomic absorption spectrometry (FAAS) or inductively coupled plasma optical emission spectrometry (ICP-OES) for all the nine elements investigated. The absolute LODs are better or equivalent to those by hydride generation atomic fluorescence spectrometry (HG-AFS). Possible scattering interferences were studied and preliminary application of the proposed method was also reported.  相似文献   

16.
The atomization of hydride-forming elements, Se, Sb and Sn, has been studied with an atmospheric pressure dielectric barrier discharge atomizer. The elements were first converted to hydride through the reaction with NaBH4. Then the hydride were atomized in the atomizer and detected by atomic absorption spectrometry. The effects of operational parameters such as power, gas flow rate and concentrations of HCl and NaBH4 were investigated. Compared with other hydride atomization methods, the proposed atomizer shows the following features: (1) small size, which is preferable for the miniaturization of the total analytical system; (2) low temperature, which would be helpful for further improvement in the compactness of the total analytical system; (3) low power consumption, which is also necessary for the development of analytical instrumentation for in situ detection of environmentally important elements. The analytical performance of the atomizer has also been investigated. The detection limits of Sb, Se and Sn obtained with the present method were 13.0, 0.6 and 10.6 μg l 1. This detector is a very promising technique for hydride detection.  相似文献   

17.
We present a very simple electrospray unit, a capillary spray cell, for easy analysis of small (10–50 μL) sample aliquots. The sample, e.g., an unfiltered extract, is injected to a small sample cell, made of alumina and containing a short fused silica capillary mounted in its side. By the application of a 5 kV potential between the sample cell and the entrance orifice of a mass spectrometer with an atmospheric pressure interface, the sample is dragged out of the cell at a rate of a few μL/min and an electrospray is generated at the tip of the silica capillary. The capillary spray cell benefits from a high internal diameter (up to 250 μm) and very easy and inexpensive replacement of the capillary, which makes the sprayer well suited for analysis of unfiltered extracts. We demonstrate the direct analysis of extracts from plants and insects. In quantitative measurements using internal standards, a relatively high sensitivity (low ng/mL) is obtained together with good linearity (R2 = 0.998) in the range of 10–1000 ng/mL. The capillary spray cell is also suited for use with field portable mass spectrometers, since no syringe pump or nebulizer gas is needed. Furthermore, the capillary spray cell is easily manufactured by most mechanical workshops.  相似文献   

18.
A method for the determination of Cu, As, Se, Cd, In, Hg, Tl, Pb and Bi in waters and in biological materials by inductively coupled plasma mass spectrometry, after an on-line separation, is described. The matrix separation and analyte preconcentration is accomplished by retention of the analytes complexed with the ammonium salt of O,O-diethyl dithiophosphoric acid in a HNO3 solution on C18 immobilized on silica in a minicolumn. Methanol, as eluent, is introduced in the conventional pneumatic nebulizer of the instrument. In order to use the best compromise conditions, concerning the ligand and acid concentrations, the analytes were determined in two separate groups. The enrichment factors were in the range from 5 to 61, depending on the analyte. The limits of detection varied from 0.43 ng L−1 for Bi to 33 ng L−1 for Cu. The sample consumption is only 2.3 mL for each group and the sampling frequency is 21 h−1. The accuracy was tested by analysing five certified reference materials: water, riverine water, urine, bovine muscle and bovine liver. The agreement between obtained and certified concentrations was very good, except for As. The relatively small volume of methanol, used as eluent, minimizes the problems produced by the introduction of organic solvent into the plasma.  相似文献   

19.
Lima EC  Krug FJ  Nóbrega JA  Nogueira AR 《Talanta》1998,47(3):613-623
A method for ytterbium determination in animal faeces by tungsten coil electrothermal atomic absorption spectrometry (TCAAS) was developed. Faeces were dry-ashed in a muffle furnace, the ashes were treated with hydrochloric acid, and 10 mul of sample solution were delivered into 150-W tungsten coil atomizer. A matrix-matching procedure employing a 66-s heating program proved to be efficient for obtaining accurate results. Characteristic mass and detection limit were 7.1 pg and 0.35 mug g(-1) Yb, respectively. The tungsten coil atomizer lifetime exceeded 300 firings with digested solutions and R.S.D. of measurements was 1.9% after ten consecutive injections of 10.0 mug l(-1) Yb. Accuracy of the proposed method was assessed by employing a graphite furnace atomic absorption spectrometric procedure. Application of the paired t-test did not reveal any significant difference for ytterbium contents determined by both methods at 95% confidence level. It was demonstrated that the proposed procedure can successfully be used for evaluation of kinetic passage rate of feed through digestive tract of animals.  相似文献   

20.
Cu was determined in a wide range of petroleum products from crude oil distillation using flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Different procedures of sample preparation were evaluated: (i) mineralization with sulfuric acid in an open system, (ii) mineralization in a closed microwave system, (iii) combustion in hydrogen–oxygen flame in the Wickbold's apparatus, (iv) matrix evaporation followed by acid dissolution, and (v) acidic extraction. All the above procedures led to the transfer of the analyte into an aqueous solution for the analytical measurement step. It was found that application of FAAS was limited to the analysis of the heaviest petroleum products of high Cu content. In ICP-MS, the use of internal reference method (with Rh or In as internal reference element) was required to eliminate the matrix effects in the analysis of extracts and the concentrated solutions of mineralized heavy petroleum products. The detection limits (in original samples) were equal to, respectively, 10, 86, 3.3, 0.9 and 0.4 ng g 1 in procedures i–v with ETAAS detection and 10, 78, 1.1 and 0.5 ng g 1 in procedures i–iii and v with ICP-MS detection. The procedures recommended here were validated by recovery experiments, certified reference materials analysis and comparison of results, obtained for a given sample, in different ways. The Cu content in the analyzed samples was: 50–110 ng g 1 in crude oil, < 0.4–6 ng g 1 in gasoline, < 0.5–2 ng g 1 in atmospheric oil, < 6–100 ng g 1 in heavy vacuum oil and 140–300 ng g 1 in distillation residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号