共查询到20条相似文献,搜索用时 15 毫秒
1.
Dawid Maliszewski Agnieszka Wrbel Beata Kolesiska Justyna Frczyk Danuta Drozdowska 《Molecules (Basel, Switzerland)》2021,26(13)
A series of new analogs of nitrogen mustards (4a–4h) containing the 1,3,5-triazine ring substituted with dipeptide residue were synthesized and evaluated for the inhibition of both acetylcholinesterase (AChE) and β-secretase (BACE1) enzymes. The AChE inhibitory activity studies were carried out using Ellman’s colorimetric method, and the BACE1 inhibitory activity studies were carried out using fluorescence resonance energy transfer (FRET). All compounds displayed considerable AChE and BACE1 inhibition. The most active against both AChE and BACE1 enzymes were compounds A and 4a, with an inhibitory concentration of AChE IC50 = 0.051 µM; 0.055 µM and BACE1 IC50 = 9.00 µM; 11.09 µM, respectively. 相似文献
2.
Jong Min Oh Hyun-Jae Jang Myung-Gyun Kang Seul-Ki Mun Daeui Park Su-Jin Hong Min Ha Kim Soo-Young Kim Sung-Tae Yee Hoon Kim 《Molecules (Basel, Switzerland)》2023,28(1)
Thirteen compounds were isolated from the Canavalia lineata pods and their inhibitory activities against human monoamine oxidase-A (hMAO-A) and -B (hMAO-B) were evaluated. Among them, compounds 8 (medicarpin) and 13 (homopterocarpin) showed potent inhibitory activity against hMAO-B (IC50 = 0.45 and 0.72 µM, respectively) with selectivity index (SI) values of 44.2 and 2.07, respectively. Most of the compounds weakly inhibited MAO-A, except 9 (prunetin) and 13. Compounds 8 and 13 were reversible competitive inhibitors against hMAO-B (Ki = 0.27 and 0.21 µM, respectively). Structurally, the 3-OH group at A-ring of 8 showed higher hMAO-B inhibitory activity than 3-OCH3 group at the A-ring of 13. However, the 9-OCH3 group at B-ring of 13 showed higher hMAO-B inhibitory activity than 8,9-methylenedioxygroup at the B-ring of 12 (pterocarpin). In cytotoxicity study, 8 and 13 showed non-toxicity to the normal (MDCK) and cancer (HL-60) cells and moderate toxicity to neuroblastoma (SH-SY5Y) cell. Molecular docking simulation revealed that the binding affinities of 8 and 13 for hMAO-B (−8.7 and −7.7 kcal/mol, respectively) were higher than those for hMAO-A (−3.4 and −7.1 kcal/mol, respectively). These findings suggest that compounds 8 and 13 be considered potent reversible hMAO-B inhibitors to be used for the treatment of neurological disorders. 相似文献
3.
Alja Prah Tanja Gavrani Andrej Perdih Marija Sollner Dolenc Janez Mavri 《Molecules (Basel, Switzerland)》2022,27(19)
Monoamine oxidases (MAOs) are an important group of enzymes involved in the degradation of neurotransmitters and their imbalanced mode of action may lead to the development of various neuropsychiatric or neurodegenerative disorders. In this work, we report the results of an in-depth computational study in which we performed a static and a dynamic analysis of a series of substituted β-carboline natural products, found mainly in roasted coffee and tobacco smoke, that bind to the active site of the MAO-A isoform. By applying molecular docking in conjunction with structure-based pharmacophores and molecular dynamics simulations coupled with dynamic pharmacophores, we extensively investigated the geometric aspects of MAO-A binding. To gain insight into the energetics of binding, we used the linear interaction energy (LIE) method and determined the key anchors that allow productive β-carboline binding to MAO-A. The results presented herein could be applied in the rational structure-based design and optimization of β-carbolines towards preclinical candidates that would target the MAO-A enzyme and would be applicable especially in the treatment of mental disorders such as depression. 相似文献
4.
Imran Ahmad Khan Matloob Ahmad Usman Ali Ashfaq Sadia Sultan Magdi E.A. Zaki 《Molecules (Basel, Switzerland)》2021,26(16)
α-Glucosidase inhibitors (AGIs) are used as medicines for the treatment of diabetes mellitus. The α-Glucosidase enzyme is present in the small intestine and is responsible for the breakdown of carbohydrates into sugars. The process results in an increase in blood sugar levels. AGIs slow down the digestion of carbohydrates that is helpful in controlling the sugar levels in the blood after meals. Among heterocyclic compounds, benzimidazole moiety is recognized as a potent bioactive scaffold for its wide range of biologically active derivatives. The aim of this study is to explore the α-glucosidase inhibition ability of benzimidazolium salts. In this study, two novel series of benzimidazolium salts, i.e., 1-benzyl-3-{2-(substituted) amino-2-oxoethyl}-1H-benzo[d]imidazol-3-ium bromide 9a–m and 1-benzyl-3-{2-substituted) amino-2-oxoethyl}-2-methyl-1H-benzo[d] imidazol-3-ium bromide 10a–m were screened for their in vitro α-glucosidase inhibitory potential. These compounds were synthesized through a multistep procedure and were characterized by 1H-NMR, 13C-NMR, and EI-MS techniques. Compound 10d was identified as the potent α-glucosidase inhibitor among the series with an IC50 value of 14 ± 0.013 μM, which is 4-fold higher than the standard drug, acarbose. In addition, compounds 10a, 10e, 10h, 10g, 10k, 10l, and 10m also exhibited pronounced potential for α-glucosidase inhibition with IC50 value ranging from 15 ± 0.037 to 32.27 ± 0.050 µM when compared with the reference drug acarbose (IC50 = 58.8 ± 0.12 μM). A molecular docking study was performed to rationalize the binding interactions of potent inhibitors with the active site of the α-glucosidase enzyme. 相似文献
5.
Alicia Ioppolo Melissa Eccles David Groth Giuseppe Verdile Mark Agostino 《Molecules (Basel, Switzerland)》2022,27(1)
γ-Secretase is an intramembrane aspartyl protease that is important in regulating normal cell physiology via cleavage of over 100 transmembrane proteins, including Amyloid Precursor Protein (APP) and Notch family receptors. However, aberrant proteolysis of substrates has implications in the progression of disease pathologies, including Alzheimer’s disease (AD), cancers, and skin disorders. While several γ-secretase inhibitors have been identified, there has been toxicity observed in clinical trials associated with non-selective enzyme inhibition. To address this, γ-secretase modulators have been identified and pursued as more selective agents. Recent structural evidence has provided an insight into how γ-secretase inhibitors and modulators are recognized by γ-secretase, providing a platform for rational drug design targeting this protease. In this study, docking- and pharmacophore-based screening approaches were evaluated for their ability to identify, from libraries of known inhibitors and modulators with decoys with similar physicochemical properties, γ-secretase inhibitors and modulators. Using these libraries, we defined strategies for identifying both γ-secretase inhibitors and modulators incorporating an initial pharmacophore-based screen followed by a docking-based screen, with each strategy employing distinct γ-secretase structures. Furthermore, known γ-secretase inhibitors and modulators were able to be identified from an external set of bioactive molecules following application of the derived screening strategies. The approaches described herein will inform the discovery of novel small molecules targeting γ-secretase. 相似文献
6.
Arpita Dey Ran Chen Feng Li Subhamita Maitra Jean-Francois Hernandez Guo-Chun Zhou Bruno Vincent 《Molecules (Basel, Switzerland)》2021,26(24)
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder, one of the main characteristics of which is the abnormal accumulation of amyloid peptide (Aβ) in the brain. Whereas β-secretase supports Aβ formation along the amyloidogenic processing of the β-amyloid precursor protein (βAPP), α-secretase counterbalances this pathway by both preventing Aβ production and triggering the release of the neuroprotective sAPPα metabolite. Therefore, stimulating α-secretase and/or inhibiting β-secretase can be considered a promising anti-AD therapeutic track. In this context, we tested andrographolide, a labdane diterpene derived from the plant Andrographis paniculata, as well as 24 synthesized derivatives, for their ability to induce sAPPα production in cultured SH-SY5Y human neuroblastoma cells. Following several rounds of screening, we identified three hits that were subjected to full characterization. Interestingly, andrographolide (8,17-olefinic) and its close derivative 14α-(5′,7′-dichloro-8′-quinolyloxy)-3,19-acetonylidene (compound 9) behave as moderate α-secretase activators, while 14α-(2′-methyl-5′,7′-dichloro-8′-quinolyloxy)-8,9-olefinic compounds 31 (3,19-acetonylidene) and 37 (3,19-diol), whose two structures are quite similar although distant from that of andrographolide and 9, stand as β-secretase inhibitors. Importantly, these results were confirmed in human HEK293 cells and these compounds do not trigger toxicity in either cell line. Altogether, these findings may represent an encouraging starting point for the future development of andrographolide-based compounds aimed at both activating α-secretase and inhibiting β-secretase that could prove useful in our quest for the therapeutic treatment of AD. 相似文献
7.
Imran Ahmad Khan Furqan Ahmad Saddique Sana Aslam Usman Ali Ashfaq Matloob Ahmad Sami A. Al-Hussain Magdi E. A. Zaki 《Molecules (Basel, Switzerland)》2022,27(18)
The α-glucosidase enzyme, located in the brush border of the small intestine, is responsible for overall glycemic control in the body. It hydrolyses the 1,4-linkage in the carbohydrates to form blood-absorbable monosaccharides that ultimately increase the blood glucose level. α-Glucosidase inhibitors (AGIs) can reduce hydrolytic activity and help to control type 2 diabetes. Aiming to achieve this, a novel series of 1-benzyl-3-((2-substitutedphenyl)amino)-2-oxoethyl)-2-(morpholinomethyl)-1H-benzimidazol-3-ium chloride was synthesized and screened for its α-glucosidase inhibitory potential. Compounds 5d, 5f, 5g, 5h and 5k exhibited better α-glucosidase inhibitions compared to the standard drug (acarbose IC50 = 58.8 ± 0.012 µM) with IC50 values of 15 ± 0.030, 19 ± 0.060, 25 ± 0.106, 21 ± 0.07 and 26 ± 0.035 µM, respectively. Furthermore, the molecular docking studies explored the mechanism of enzyme inhibitions by different 1,2,3-trisubstituted benzimidazolium salts via significant ligand–receptor interactions. 相似文献
8.
Maryam Ghanbari-Movahed Zahra Ghanbari-Movahed Saeideh Momtaz Kaitlyn L. Kilpatrick Mohammad Hosein Farzaei Anupam Bishayee 《Molecules (Basel, Switzerland)》2021,26(4)
The dysregulation of Notch signaling is associated with a wide variety of different human cancers. Notch signaling activation mostly relies on the activity of the γ-secretase enzyme that cleaves the Notch receptors and releases the active intracellular domain. It is well-documented that γ-secretase inhibitors (GSIs) block the Notch activity, mainly by inhibiting the oncogenic activity of this pathway. To date, several GSIs have been introduced clinically for the treatment of various diseases, such as Alzheimer’s disease and various cancers, and their impacts on Notch inhibition have been found to be promising. Therefore, GSIs are of great interest for cancer therapy. The objective of this review is to provide a systematic review of in vitro and in vivo studies for investigating the effect of GSIs on various cancer stem cells (CSCs), mainly by modulation of the Notch signaling pathway. Various scholarly electronic databases were searched and relevant studies published in the English language were collected up to February 2020. Herein, we conclude that GSIs can be potential candidates for CSC-targeting therapy. The outcome of our study also indicates that GSIs in combination with anticancer drugs have a greater inhibitory effect on CSCs. 相似文献
9.
Xiangcong Wang Moxuan Zhang Ranran Zhu Zhongshan Wu Fanhong Wu Zhonghua Wang Yanyan Yu 《Molecules (Basel, Switzerland)》2022,27(2)
PI3Kα is one of the potential targets for novel anticancer drugs. In this study, a series of 2-difluoromethylbenzimidazole derivatives were studied based on the combination of molecular modeling techniques 3D-QSAR, molecular docking, and molecular dynamics. The results showed that the best comparative molecular field analysis (CoMFA) model had q2 = 0.797 and r2 = 0.996 and the best comparative molecular similarity indices analysis (CoMSIA) model had q2 = 0.567 and r2 = 0.960. It was indicated that these 3D-QSAR models have good verification and excellent prediction capabilities. The binding mode of the compound 29 and 4YKN was explored using molecular docking and a molecular dynamics simulation. Ultimately, five new PI3Kα inhibitors were designed and screened by these models. Then, two of them (86, 87) were selected to be synthesized and biologically evaluated, with a satisfying result (22.8 nM for 86 and 33.6 nM for 87). 相似文献
10.
Yang Liu Xue Zhou Dan Zhou Yongxing Jian Jingfu Jia Fahuan Ge 《Molecules (Basel, Switzerland)》2022,27(18)
Diabetes is a chronic metabolic disease, whereas α-glucosidases are key enzymes involved in the metabolism of starch and glycogen. There is a long history of the use of mulberry leaf (the leaf of Morus alba) as an antidiabetic herb in China, and we found that chalcomoracin, one of the specific Diels–Alder adducts in mulberry leaf, had prominent α-glucosidase inhibitory activity and has the potential to be a substitute for current hypoglycemic drugs such as acarbose, which have severe gastrointestinal side effects. In this study, chalcomoracin was effectively isolated from mulberry leaves, and its α-glucosidase inhibition was studied via enzymatic kinetics, isothermal titration (ITC) and molecular docking. The results showed that chalcomoracin inhibited α-glucosidase through both competitive and non-competitive manners, and its inhibitory activity was stronger than that of 1-doxymycin (1-DNJ) but slightly weaker than that of acarbose. ITC analysis revealed that the combination of chalcomoracin and α-glucosidase was an entropy-driven spontaneous reaction, and the molecular docking results also verified this conclusion. During the binding process, chalcomoracin went into the “pocket” of α-glucosidase via hydrophobic interactions, and it is linked with residues Val544, Asp95, Ala93, Gly119, Arg275 and Pro287 by hydrogen bonds. This study provided a potential compound for the prevention and treatment of diabetes and a theoretical basis for the discovery of novel candidates for α-glycosidase inhibitors. 相似文献
11.
Hypoxia-inducible factor-1α (HIF-1α) is widely distributed in human cells, and it can form different signaling pathways with various upstream and downstream proteins, mediate hypoxia signals, regulate cells to produce a series of compensatory responses to hypoxia, and play an important role in the physiological and pathological processes of the body, so it is a focus of biomedical research. In recent years, various types of HIF-1α inhibitors have been designed and synthesized and are expected to become a new class of drugs for the treatment of diseases such as tumors, leukemia, diabetes, and ischemic diseases. This article mainly reviews the structure and functional regulation of HIF-1α, the modes of action of HIF-1α inhibitors, and the application of HIF-1α inhibitors during the treatment of diseases. 相似文献
12.
Kashif Rafiq Najeeb Ur Rehman Sobia Ahsan Halim Majid Khan Ajmal Khan Ahmed Al-Harrasi 《Molecules (Basel, Switzerland)》2022,27(3)
Carbonic anhydrase-II (CA-II) is strongly related with gastric, glaucoma, tumors, malignant brain, renal and pancreatic carcinomas and is mainly involved in the regulation of the bicarbonate concentration in the eyes. With an aim to develop novel heterocyclic hybrids as potent enzyme inhibitors, we synthesized a series of twelve novel 3-phenyl-β-alanine 1,3,4-oxadiazole hybrids (4a–l), characterized by 1H- and 13C-NMR with the support of HRESIMS, and evaluated for their inhibitory activity against CA-II. The CA-II inhibition results clearly indicated that the 3-phenyl-β-alanine 1,3,4-oxadiazole derivatives 4a–l exhibited selective inhibition against CA-II. All the compounds (except 4d) exhibited good to moderate CA-II inhibitory activities with IC50 value in range of 12.1 to 53.6 µM. Among all the compounds, 4a (12.1 ± 0.86 µM), 4c (13.8 ± 0.64 µM), 4b (19.1 ± 0.88 µM) and 4h (20.7 ± 1.13 µM) are the most active hybrids against carbonic CA-II. Moreover, molecular docking was performed to understand the putative binding mode of the active compounds. The docking results indicates that these compounds block the biological activity of CA-II by nicely fitting at the entrance of the active site of CA-II. These compounds specifically mediating hydrogen bonding with Thr199, Thr200, Gln92 of CA-II. 相似文献
13.
Shoaib Khan Shahid Iqbal Mazloom Shah Wajid Rehman Rafaqat Hussain Liaqat Rasheed Hamad Alrbyawi Ayed A. Dera Mohammed Issa Alahmdi Rami Adel Pashameah Eman Alzahrani Abd-ElAziem Farouk 《Molecules (Basel, Switzerland)》2022,27(20)
A unique series of sulphonamide derivatives was attempted to be synthesized in this study using a new and effective method. All of the synthesized compounds were verified using several spectroscopic methods, including FTIR, 1H-NMR, 13C-NMR, and HREI-MS, and their binding interactions were studied using molecular docking. The enzymes urease and α-glucosidase were evaluated against each derivative (1–15). When compared to their respective standard drug such as acarbose and thiourea, almost all compounds were shown to have excellent activity. Among the screened series, analogs 5 (IC50 = 3.20 ± 0.40 and 2.10 ± 0.10 µM) and 6 (IC50 = 2.50 ± 0.40 and 5.30 ± 0.20 µM), emerged as potent molecules when compared to the standard drugs acarbose (IC50 = 8.24 ± 0.08 µM) and urease (IC50 = 7.80 ± 0.30). Moreover, an anti-microbial study also demonstrated that analogs 5 and 6 were found with minimum inhibitory concentrations (MICs) in the presence of standard drugs streptomycin and terinafine. 相似文献
14.
Victor S. Batista Adriano Marques Gonalves Nailton M. Nascimento-Júnior 《Molecules (Basel, Switzerland)》2022,27(23)
The neuronal nicotinic acetylcholine receptors (nAChRs) belong to the ligand-gated ion channel (GLIC) group, presenting a crucial role in several biological processes and neuronal disorders. The α4β2 and α7 nAChRs are the most abundant in the central nervous system (CNS), being involved in challenging diseases such as epilepsy, Alzheimer’s disease, schizophrenia, and anxiety disorder, as well as alcohol and nicotine dependencies. In addition, in silico-based strategies may contribute to revealing new insights into drug design and virtual screening to find new drug candidates to treat CNS disorders. In this context, the pharmacophore maps were constructed and validated for the orthosteric sites of α4β2 and α7 nAChRs, through a docking-based Comparative Intermolecular Contacts Analysis (dbCICA). In this sense, bioactive ligands were retrieved from the literature for each receptor. A molecular docking protocol was developed for all ligands in both receptors by using GOLD software, considering GoldScore, ChemScore, ASP, and ChemPLP scoring functions. Output GOLD results were post-processed through dbCICA to identify critical contacts involved in protein-ligand interactions. Moreover, Crossminer software was used to construct a pharmacophoric map based on the most well-behaved ligands and negative contacts from the dbCICA model for each receptor. Both pharmacophore maps were validated by using a ROC curve. The results revealed important features for the ligands, such as the presence of hydrophobic regions, a planar ring, and hydrogen bond donor and acceptor atoms for α4β2. Parallelly, a non-planar ring region was identified for α7. These results can enable fragment-based drug design (FBDD) strategies, such as fragment growing, linking, and merging, allowing an increase in the activity of known fragments. Thus, our results can contribute to a further understanding of structural subunits presenting the potential for key ligand-receptor interactions, favoring the search in molecular databases and the design of novel ligands. 相似文献
15.
Doaa A. Osman Mario A. Macías Lamya H. Al-Wahaibi Nora H. Al-Shaalan Luke S. Zondagh Jacques Joubert Santiago Garcia-Granda Ali A. El-Emam 《Molecules (Basel, Switzerland)》2021,26(17)
The solid-state structural analysis and docking studies of three adamantane-linked 1,2,4-triazole derivatives are presented. Crystal structure analyses revealed that compound 2 crystallizes in the triclinic P-1 space group, while compounds 1 and 3 crystallize in the same monoclinic P21/c space group. Since the only difference between them is the para substitution on the aryl group, the electronic nature of these NO2 and halogen groups seems to have no influence over the formation of the solid. However, a probable correlation with the size of the groups is not discarded due to the similar intermolecular disposition between the NO2/Cl substituted molecules. Despite the similarities, CE-B3LYP energy model calculations show that pairwise interaction energies vary between them, and therefore the total packing energy is affected. HOMO-LUMO calculated energies show that the NO2 group influences the reactivity properties characterizing the molecule as soft and with the best disposition to accept electrons. Further, in silico studies predicted that the compounds might be able to inhibit the 11β-HSD1 enzyme, which is implicated in obesity and diabetes. Self- and cross-docking experiments revealed that a number of non-native 11β-HSD1 inhibitors were able to accurately dock within the 11β-HSD1 X-ray structure 4C7J. The molecular docking of the adamantane-linked 1,2,4-triazoles have similar predicted binding affinity scores compared to the 4C7J native ligand 4YQ. However, they were unable to form interactions with key active site residues. Based on these docking results, a series of potentially improved compounds were designed using computer aided drug design tools. The docking results of the new compounds showed similar predicted 11β-HSD1 binding affinity scores as well as interactions to a known potent 11β-HSD1 inhibitor. 相似文献
16.
As a key enzyme regulating postprandial blood glucose, α-Glucosidase is considered to be an effective target for the treatment of diabetes mellitus. In this study, a simple, rapid, and effective method for enzyme inhibitors screening assay was established based on α-glucosidase catalyzes reactions in a personal glucose meter (PGM). α-glucosidase catalyzes the hydrolysis of maltose to produce glucose, which triggers the reduction of ferricyanide (K3[Fe(CN)6]) to ferrocyanide (K4[Fe(CN)6]) and generates the PGM detectable signals. When the α-glucosidase inhibitor (such as acarbose) is added, the yield of glucose and the readout of PGM decreased accordingly. This method can achieve the direct determination of α-glucosidase activity by the PGM as simple as the blood glucose tests. Under the optimal experimental conditions, the developed method was applied to evaluate the inhibitory activity of thirty-four small-molecule compounds and eighteen medicinal plants extracts on α-glucosidase. The results exhibit that lithospermic acid (52.5 ± 3.0%) and protocatechualdehyde (36.8 ± 2.8%) have higher inhibitory activity than that of positive control acarbose (31.5 ± 2.5%) at the same final concentration of 5.0 mM. Besides, the lemon extract has a good inhibitory effect on α-glucosidase with a percentage of inhibition of 43.3 ± 3.5%. Finally, the binding sites and modes of four active small-molecule compounds to α-glucosidase were investigated by molecular docking analysis. These results indicate that the PGM method is feasible to screening inhibitors from natural products with simple and rapid operations. 相似文献
17.
Muhammed een Jong Min Oh Zeynep
zdemir Saliha Ebru Büyüktuncel Mehtap Uysal Mohamed A. Abdelgawad Arafa Musa Nicola Gambacorta Orazio Nicolotti Bijo Mathew Hoon Kim 《Molecules (Basel, Switzerland)》2020,25(22)
Twelve pyridazinones (T1–T12) containing the (2-fluorophenyl) piperazine moiety were designed, synthesized, and evaluated for monoamine oxidase (MAO) -A and -B inhibitory activities. T6 was found to be the most potent MAO-B inhibitor with an IC50 value of 0.013 µM, followed by T3 (IC50 = 0.039 µM). Inhibitory potency for MAO-B was more enhanced by meta bromo substitution (T6) than by para bromo substitution (T7). For para substitution, inhibitory potencies for MAO-B were as follows: -Cl (T3) > -N(CH3)2 (T12) > -OCH3 (T9) > Br (T7) > F (T5) > -CH3 (T11) > -H (T1). T6 and T3 efficiently inhibited MAO-A with IC50 values of 1.57 and 4.19 µM and had the highest selectivity indices (SIs) for MAO-B (120.8 and 107.4, respectively). T3 and T6 were found to be reversible and competitive inhibitors of MAO-B with Ki values of 0.014 and 0.0071, respectively. Moreover, T6 was less toxic to healthy fibroblast cells (L929) than T3. Molecular docking simulations with MAO binding sites returned higher docking scores for T6 and T3 with MAO-B than with MAO-A. These results suggest that T3 and T6 are selective, reversible, and competitive inhibitors of MAO-B and should be considered lead candidates for the treatment of neurodegenerative disorders like Alzheimer’s disease. 相似文献
18.
Shashank M. Patil Reshma Mary Martiz A. M. Satish Abdullah M. Shbeer Mohammed Ageel Mohammed Al-Ghorbani Lakshmi Ranganatha V Saravanan Parameswaran Ramith Ramu 《Molecules (Basel, Switzerland)》2022,27(12)
Coumarin derivatives are proven for their therapeutic uses in several human diseases and disorders such as inflammation, neurodegenerative disorders, cancer, fertility, and microbial infections. Coumarin derivatives and coumarin-based scaffolds gained renewed attention for treating diabetes mellitus. The current decade witnessed the inhibiting potential of coumarin derivatives and coumarin-based scaffolds against α-glucosidase and α-amylase for the management of postprandial hyperglycemia. Hyperglycemia is a condition where an excessive amount of glucose circulates in the bloodstream. It occurs when the body lacks enough insulin or is unable to correctly utilize it. With open-source and free in silico tools, we have investigated novel 80 coumarin derivatives for their inhibitory potential against α-glucosidase and α-amylase and identified a coumarin derivative, CD-59, as a potential dual inhibitor. The ligand-based 3D pharmacophore detection and search is utilized to discover diverse coumarin-like compounds and new chemical scaffolds for the dual inhibition of α-glucosidase and α-amylase. In this regard, four novel coumarin-like compounds from the ZINC database have been discovered as the potential dual inhibitors of α-glucosidase and α-amylase (ZINC02789441 and ZINC40949448 with scaffold thiophenyl chromene carboxamide, ZINC13496808 with triazino indol thio phenylacetamide, and ZINC09781623 with chromenyl thiazole). To summarize, we propose that a coumarin derivative, CD-59, and ZINC02789441 from the ZINC database will serve as potential lead molecules with dual inhibition activity against α-glucosidase and α-amylase, thereby discovering new drugs for the effective management of postprandial hyperglycemia. From the reported scaffold, the synthesis of several novel compounds can also be performed, which can be used for drug discovery. 相似文献
19.
Antimicrobial resistance (AMR) threatens millions of people around the world and has been declared a global risk by the World Economic Forum. One of the important AMR mechanisms in Enterobacteriaceae is the production of extended-spectrum β-lactamases. The most common ESBL, CTX-M β-lactamases, is spread to the world by CTX-M-15 and CTX-M-14. Sulbactam, clavulanic acid, and tazobactam are first-generation β-lactamase inhibitors and avibactam is a new non-β-lactam β-lactamase inhibitor. We studied that avibactam, sulbactam, clavulanic acid, tazobactam, and quercetin natural flavonoids were docked to target protein CTXM-15. Subsequently, the complexes were simulated using the molecular dynamics simulations method during 100 ns for determining the final binding positions of ligands. Clavulanic acid left CTX-M-15 and other ligands remained in the binding site after the simulation. The estimated binding energies were calculated during 100 ns simulation by the MMGBSA-MMPBSA method. The estimated free binding energies of avibactam, sulbactam, quercetin, tazobactam, and clavulanic acid were sorted as –33.61 kcal/mol, –16.04 kcal/mol, –14 kcal/mol, –12.68 kcal/mol, and –2.95 kcal/mol. As a result of both final binding positions and free binding energy calculations, Quercetin may be evaluated an alternative candidate and a more potent β-lactamases inhibitor for new antimicrobial combinations to CTX-M-15. The results obtained in silico studies are predicted to be a preliminary study for in vitro studies for quercetin and similar bioactive natural compounds. These studies are notable for the discovery of natural compounds that can be used in the treatment of infections caused by β-lactamase-producing pathogens. 相似文献
20.
Haibo Wang Senling Tang Guoqing Zhang Yang Pan Wei Jiao Huawu Shao 《Molecules (Basel, Switzerland)》2022,27(17)
A series of N-substituted iminosugar C-glycosides were synthesized and tested for α-glucosidase inhibition. The results suggested that 6e is a promising and potent α-glucosidase inhibitor. Enzymatic kinetic assays indicated that compound 6e may be classified as an uncompetitive inhibitor. The study of structure-activity relationships of those iminosugars provided a starting point for the discovery of new α-glucosidase inhibitors. 相似文献