首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exact absorbing boundary conditions for a linearized KdV equation are derived in this paper. Applying these boundary conditions at artificial boundary points yields an initial‐boundary value problem defined only on a finite interval. A dual‐Petrov‐Galerkin scheme is proposed for numerical approximation. Fast evaluation method is developed to deal with convolutions involved in the exact absorbing boundary conditions. In the end, some numerical tests are presented to demonstrate the effectiveness and efficiency of the proposed method.© 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

2.
We propose a spectral collocation method for the numerical solution of the time‐dependent Schrödinger equation, where the newly developed nonpolynomial functions in a previous study are used as basis functions. Equipped with the new basis functions, various boundary conditions can be imposed exactly. The preferable semi‐implicit time marching schemes are employed for temporal discretization. Moreover, the new basis functions build in a free parameter λ intrinsically, which can be chosen properly so that the semi‐implicit scheme collapses to an explicit scheme. The method is further applied to linear Schrödinger equation set in unbounded domain. The transparent boundary conditions are constructed for time semidiscrete scheme of the linear Schrödinger equation. We employ spectral collocation method using the new basis functions for the spatial discretization, which allows for the exact imposition of the transparent boundary conditions. Comprehensive numerical tests both in bounded and unbounded domain are performed to demonstrate the attractive features of the proposed method.  相似文献   

3.
We consider a mathematical model for thermal analysis in a 3D N‐carrier system with Neumann boundary conditions, which extends the concept of the well‐known parabolic two‐step model for micro heat transfer. To solve numerically the complex system, we first reduce 3D equations in the model to a succession of 1D equations by using the local one‐dimensional (LOD) method. The obtained 1D equations are then solved using a fourth‐order compact finite difference scheme for the interior points and a second‐order combined compact finite difference scheme for the points next to the boundary, so that the Neumann boundary condition can be applied directly without discretizing. By using matrix analysis, the compact LOD scheme is shown to be unconditionally stable. The accuracy of the solution is tested using two numerical examples. Results show that the solutions obtained by the compact LOD finite difference scheme are more accurate than those obtained by a Crank‐Nicholson LOD scheme, and the convergence rate with respect to spatial variables is about 2.6. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

4.
In this article we present a fourth‐order finite difference scheme, for a system of two‐dimensional, second‐order, nonlinear elliptic partial differential equations with mixed spatial derivative terms, using 13‐point stencils with a uniform mesh size h on a square region R subject to Dirichlet boundary conditions. The scheme of order h4 is derived using the local solution of the system on a single stencil. The resulting system of algebraic equations can be solved by iterative methods. The difference scheme can be easily modified to obtain formulae for grid points near the boundary. Computational results are given to demonstrate the performance of the scheme on some problems including Navier‐Stokes equations. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 43–53, 2001  相似文献   

5.
A second‐order finite difference/pseudospectral scheme is proposed for numerical approximation of multi‐term time fractional diffusion‐wave equation with Neumann boundary conditions. The scheme is based upon the weighted and shifted Grünwald difference operators approximation of the time fractional calculus and Gauss‐Lobatto‐Legendre‐Birkhoff (GLLB) pseudospectral method for spatial discretization. The unconditionally stability and convergence of the scheme are rigorously proved. Numerical examples are carried out to verify theoretical results.  相似文献   

6.
A numerical method is devised to solve a class of linear boundary‐value problems for one‐dimensional parabolic equations degenerate at the boundaries. Feller theory, which classifies the nature of the boundary points, is used to decide whether boundary conditions are needed to ensure uniqueness, and, if so, which ones they are. The algorithm is based on a suitable preconditioned implicit finite‐difference scheme, grid, and treatment of the boundary data. Second‐order accuracy, unconditional stability, and unconditional convergence of solutions of the finite‐difference scheme to a constant as the time‐step index tends to infinity are further properties of the method. Several examples, pertaining to financial mathematics, physics, and genetics, are presented for the purpose of illustration. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

7.
In this article, we discuss a scheme for dealing with Neumann and mixed boundary conditions using a compact stencil. The resulting compact algorithm for solving systems of nonlinear reaction‐diffusion equations is fourth‐order accurate in both the temporal and spatial dimensions. We also prove that the standard second‐order approximation to zero Neumann boundary conditions provides fourth‐order accuracy when the nonlinear reaction term is independent of the spatial variables. Numerical examples, including an application of this algorithm to a mathematical model describing frontal polymerization process, are presented in the article to demonstrate the accuracy and efficiency of the scheme. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

8.
In this study, we develop a fourth‐order compact finite difference scheme for solving a model of energy exchanges in a generalized N‐carrier system with heat sources and Neumann boundary conditions, which extends the concept of the well‐known parabolic two‐step model for microheat transfer. By using the matrix analysis, the compact finite difference numerical scheme is shown to be unconditionally stable. The accuracy of the solution obtained by the scheme is tested by a numerical example. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

9.
It is known that the initial‐boundary value problem for certain integrable Partial Differential Equations (PDEs) on the half‐line with integrable boundary conditions can be mapped to a special case of the inverse scattering method (ISM) on the full‐line. This can also be established within the so‐called unified transform (UT) of Fokas for initial‐boundary value problems with linearizable boundary conditions. In this paper, we show a converse to this statement within the Ablowitz‐Kaup‐Newell‐Segur (AKNS) scheme: the ISM on the full‐line can be mapped to an initial‐boundary value problem with linearizable boundary conditions. To achieve this, we need a matrix version of the UT that was introduced by the author to study integrable PDEs on star‐graphs. As an application of the result, we show that the new, nonlocal reduction of the AKNS scheme introduced by Ablowitz and Musslimani to obtain the nonlocal nonlinear Schrödinger (NLS) equation can be recast as an old, local reduction, thus putting the nonlocal NLS and the NLS equations on equal footing from the point of view of the reduction group theory of Mikhailov.  相似文献   

10.
We consider the third‐order Claerbout‐type wide‐angle parabolic equation (PE) of underwater acoustics in a cylindrically symmetric medium consisting of water over a soft bottom B of range‐dependent topography. There is strong indication that the initial‐boundary value problem for this equation with just a homogeneous Dirichlet boundary condition posed on B may not be well‐posed, for example when B is downsloping. We impose, in addition to the above, another homogeneous, second‐order boundary condition, derived by assuming that the standard (narrow‐angle) PE holds on B, and establish a priori H2 estimates for the solution of the resulting initial‐boundary value problem for any bottom topography. After a change of the depth variable that makes B horizontal, we discretize the transformed problem by a second‐order accurate finite difference scheme and show, in the case of upsloping and downsloping wedge‐type domains, that the new model gives stable and accurate results. We also present an alternative set of boundary conditions that make the problem exactly energy conserving; one of these conditions may be viewed as a generalization of the Abrahamsson–Kreiss boundary condition in the wide‐angle case. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Finite difference scheme to the generalized one‐dimensional sine‐Gordon equation is considered in this paper. After approximating the second order derivative in the space variable by the compact finite difference, we transform the sine‐Gordon equation into an initial‐value problem of a second‐order ordinary differential equation. Then Padé approximant is used to approximate the time derivatives. The resulting fully discrete nonlinear finite‐difference equation is solved by a predictor‐corrector scheme. Both Dirichlet and Neumann boundary conditions are considered in our proposed algorithm. Stability analysis and error estimate are given for homogeneous Dirichlet boundary value problems using energy method. Numerical results are given to verify the condition for stability and convergence and to examine the accuracy and efficiency of the proposed algorithm. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

12.
In this article, we take the parabolic equation with Dirichlet boundary conditions as a model to present the Legendre spectral methods both in spatial and in time. Error analysis for the single/multi‐interval schemes in time is given. For the single interval spectral method in time, we obtain a better error estimate in L2‐norm. For the multi‐interval spectral method in time, we obtain the L2‐optimal error estimate in spatial. By choosing approximate trial and test functions, the methods result in algebraic systems with sparse forms. A parallel algorithm is constructed for the multi‐interval scheme in time. Numerical results show the efficiency of the methods. The methods are also applied to parabolic equations with Neumann boundary conditions, Robin boundary conditions and some nonlinear PDEs. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

13.
The finite element method has been well established for numerically solving parabolic partial differential equations (PDEs). Also it is well known that a too large time step should not be chosen in order to obtain a stable and accurate numerical solution. In this article, accuracy analysis shows that a too small time step should not be chosen either for some time‐stepping schemes. Otherwise, the accuracy of the numerical solution cannot be improved or can even be worsened in some cases. Furthermore, the so‐called minimum time step criteria are established for the Crank‐Nicolson scheme, the Galerkin‐time scheme, and the backward‐difference scheme used in the temporal discretization. For the forward‐difference scheme, no minimum time step exists as far as the accuracy is concerned. In the accuracy analysis, no specific initial and boundary conditions are invoked so that such established criteria can be applied to the parabolic PDEs subject to any initial and boundary conditions. These minimum time step criteria are verified in a series of numerical experiments for a one‐dimensional transient field problem with a known analytical solution. The minimum time step criteria developed in this study are useful for choosing appropriate time steps in numerical simulations of practical engineering problems. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

14.
A compact ADI scheme of second‐order in time and fourth‐order in space is proposed for solving linear Schrödinger equations with periodic boundary conditions. By using the recently suggested discrete energy method, it is shown that the stable compact ADI method is unconditionally convergent in the maximum norm. Numerical experiments, including the comparisons with the second‐order ADI scheme and the time‐splitting Fourier pseudospectral method, are presented to support the theoretical results and show the effectiveness of our method. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2012  相似文献   

15.
In this paper a two‐dimensional solute transport model is considered to simulate the leaching of copper ore tailing using sulfuric acid as the leaching agent. The mathematical model consists in a system of differential equations: two diffusion–convection‐reaction equations with Neumann boundary conditions, and one ordinary differential equation. The numerical scheme consists in a combination of finite volume and finite element methods. A Godunov scheme is used for the convection term and an P1‐FEM for the diffusion term. The convergence analysis is based on standard compactness results in L2. Some numerical examples illustrate the effectiveness of the scheme. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
In this article, we study the numerical solutions of a class of complex partial differential equation (PDE) systems with free boundary conditions. This problem arises naturally in pricing American options with regime‐switching, which adds significant complexity in the PDE systems due to regime coupling. Developing efficient numerical schemes will have important applications in computational finance. We propose a new method to solve the PDE systems by using a penalty method approach and an exponential time differencing scheme. First, the penalty method approach is applied to convert the free boundary value PDE system to a system of PDEs over a fixed rectangular region for the time and spatial variables. Then, a new exponential time differncing Crank–Nicolson (ETD‐CN) method is used to solve the resulting PDE system. This ETD‐CN scheme is shown to be second order convergent. We establish an upper bound condition for the time step size and prove that this ETD‐CN scheme satisfies a discrete version of the positivity constraint for American option values. The ETD‐CN scheme is compared numerically with a linearly implicit penalty method scheme and with a tree method. Numerical results are reported to illustrate the convergence of the new scheme. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

17.
Our objective in this article is to present some numerical schemes for the approximation of the 2‐D Navier–Stokes equations with periodic boundary conditions, and to study the stability and convergence of the schemes. Spatial discretization can be performed by either the spectral Galerkin method or the optimum spectral non‐linear Galerkin method; time discretization is done by the Euler scheme and a two‐step scheme. Our results show that under the same convergence rate the optimum spectral non‐linear Galerkin method is superior to the usual Galerkin methods. Finally, numerical example is provided and supports our results. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
In this article, we utilize spline wavelets to establish an adaptive multilevel numerical scheme for time‐dependent convection‐dominated diffusion problems within the frameworks of Galerkin formulation and Eulerian‐Lagrangian localized adjoint methods (ELLAM). In particular, we shall use linear Chui‐Quak semi‐orthogonal wavelets, which have explicit expressions and compact supports. Therefore, both the diffusion term and boundary conditions in the convection‐diffusion problems can be readily handled. Strategies for efficiently implementing the scheme are discussed and numerical results are interpreted from the viewpoint of nonlinear approximation. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

19.
A finite‐volume scheme for the stationary unipolar quantum drift‐diffusion equations for semiconductors in several space dimensions is analyzed. The model consists of a fourth‐order elliptic equation for the electron density, coupled to the Poisson equation for the electrostatic potential, with mixed Dirichlet‐Neumann boundary conditions. The numerical scheme is based on a Scharfetter‐Gummel type reformulation of the equations. The existence of a sequence of solutions to the discrete problem and its numerical convergence to a solution to the continuous model are shown. Moreover, some numerical examples in two space dimensions are presented. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1483–1510, 2011  相似文献   

20.
An interpolated coefficient finite element method is presented and analyzed for the two‐dimensional elliptic sine‐Gordon equations with Dirichlet boundary conditions. It is proved that the discretization scheme admits at least one solution, and that a subsequence of the approximation solutions converges to an exact solution in L2‐norm as the mesh size tends to zero. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号