首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It has been a challenge to synthesize high molecular weight and soluble conjugated hyperbranched poly(1,2,3‐triazole)s (hb‐PTAs). In this paper a series of soluble hyperbranched polytriazoles, whose number‐average molecular weight (Mn) and polydispersity index ranged in (1.2–3.3)×104 and 1.7–3.0, respectively, were synthesized with A2+B3 approach. In the polymerization process, diazides A1 – A4 and triyne B1 were used as A2 and B3 monomers; Cu(I)‐catalyst, THF and water were used as their reaction system. At room temperature the final molecular weight could be controlled through reaction time, so finally we obtained soluble conjugated hyperbranched poly(1,2,3‐triazole)s hb‐PTAs (1–4 ). The polymers were soluble in common organic solvents, and all emitted blue light; the films of polymers emitted yellow and blue light, due to the difference in the aggregation of their chromophoric units in the solid state. The thermal properties of the final copolymers were analyzed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).  相似文献   

2.
The Cu+ catalyzed, 1,3‐dipolar cycloaddition of polyoxyethylene di(azidoalkynes), yields a mixture of the polyoxyethylene 1,5‐disubstituted fused di(1,2,3‐triazole‐1,4‐oxazines) as the major product, and the 1,4‐disubstituted mono‐(1,2,3‐triazolo) azidoalkyne crown ether.  相似文献   

3.
The boom in growth of 1,4‐disubstituted triazole products, in particular, since the early 2000’s, can be largely attributed to the birth of click chemistry and the discovery of the CuI‐catalyzed azide–alkyne cycloaddition (CuAAC). Yet the synthesis of relatively simple, albeit important, 1‐substituted‐1,2,3‐triazoles has been surprisingly more challenging. Reported here is a straightforward and scalable click‐inspired protocol for the synthesis of 1‐substituted‐1,2,3‐triazoles from organic azides and the bench stable acetylene surrogate ethenesulfonyl fluoride (ESF). The new transformation tolerates a wide selection of substrates and proceeds smoothly under metal‐free conditions to give the products in excellent yield. Under controlled acidic conditions, the 1‐substituted‐1,2,3‐triazole products undergo a Michael addition reaction with a second equivalent of ESF to give the unprecedented 1‐substituted triazolium sulfonyl fluoride salts.  相似文献   

4.
The cycloaddition of organic azides with some conjugated enamines of the 2‐amino‐1,3‐diene, 1‐amino‐1,3‐diene, and 2‐aminobut‐1‐en‐3‐yne type is investigated. The 2‐morpholinobuta‐1,3‐diene 1 undergoes regioselective [3+2] cycloaddition with several electrophilic azides RN3 2 ( a , R=4‐nitrophenyl; b , R=ethoxycarbonyl; c , R=tosyl; d , R=phenyl) to form 5‐alkenyl‐4,5‐dihydro‐5‐morpholino‐1H‐1,2,3‐triazoles 3 which are transformed into 1,5‐disubstituted 1H‐triazoles 4a , d or α,β‐unsaturated carboximidamide 5 (Scheme 1). The cycloaddition reaction of 4‐[(1E,3Z)‐3‐morpholino‐4‐phenylbuta‐1,3‐dienyl]morpholine ( 7 ) with azide 2a occurs at the less‐substituted enamine function and yields the 4‐(1‐morpholino‐2‐phenylethenyl)‐1H‐1,2,3‐triazole 8 (Scheme 2). The 1,3‐dipolar cycloaddition reaction of azides 2a – d with 4‐(1‐methylene‐3‐phenylprop‐2‐ynyl)morpholine ( 9 ) is accelerated at high pressure (ca. 7–10 kbar) and gives 1,5‐disubstituted dihydro‐1H‐triazoles 10a , b and 1‐phenyl‐5‐(phenylethynyl)‐1H‐1,2,3‐triazole ( 11d ) in significantly improved yields (Schemes 3 and 4). The formation of 11d is also facilitated in the presence of an equimolar quantity of tBuOH. The three‐component reaction between enamine 9 , phenyl azide, and phenol affords the 5‐(2‐phenoxy‐2‐phenylethenyl)‐1H‐1,2,3‐triazole 14d .  相似文献   

5.
A safe, efficient, and improved procedure for the regioselective synthesis of 1‐(2‐hydroxyethyl)‐1H‐1,2,3‐triazole derivatives under ambient conditions is described. Terminal alkynes reacted with oxiranes and NaN3 in the presence of a copper(I) catalyst, which is prepared by in situ reduction of the copper(II) complex 4 with ascorbic acid, in H2O. The regioselective reactions exclusively gave the corresponding 1,4‐disubstituted 1H‐1,2,3‐triazoles in good to excellent yields. This procedure avoids the handling of organic azides as they are generated in situ, making this already powerful click process even more user‐friendly and safe. The remarkable features of this protocol are high yields, very short reaction times, a cleaner reaction profile in an environmentally benign solvent (H2O), its straightforwardness, and the use of nontoxic catalysts. Furthermore, the catalyst could be recovered and recycled by simple filtration of the reaction mixture and reused for ten consecutive trials without significant loss of catalytic activity. No metal‐complex leaching was observed after the consecutive catalytic reactions.  相似文献   

6.
New tricyclic 1,2,3‐triazolo‐1,2,4‐triazolo‐pyridazine derivatives, bearing a methyl substituent on the 1,2,3‐triazole ring, were prepared as potential biological agents. N‐Methylation of dimethyl 1,2,3‐triazole‐4,5‐dicarboxylate allowed synthesis of the isomeric 1‐methyl‐4,7‐dihydroxy and 2‐methyl‐4,7‐dihydroxy triazolo‐pyridazines 4a and 4b which, by a chlorination reaction, gave the corresponding 1‐methyl‐4‐chloro‐( 6a ), 1‐methyl‐7‐chloro‐ ( 6b ) and 2‐methyl‐4‐chloro‐ ( 9 ) substituted 1,2,3‐triazolo‐pyridazines. The nucle‐ophilic substitution with hydrazine hydrate and the suitable cyclization to form the 1,2,4‐triazole ring, provided the expected tricyclic isomeric derivatives 8a, 8b and 11 respectively. The p‐methoxybenzyl substituent, introduced as a leaving group to obtain either v‐triazolo‐pyridazine or v‐triazolo‐s‐triazolo‐pyri‐dazine derivatives unsubstituted on the 1,2,3‐triazole ring, appeared inadequate. Some compounds underwent binding assays toward the adenosine A1and A2A receptors.  相似文献   

7.
Starting from 3,5‐diamino benzoic acid, 2‐hydroxy propyl[3,5‐bis{(benzoxycarbonyl)imino}]benzyl ether, an AB2‐type blocked isocyanate monomer with flexible ether group, and 2‐hydroxy propyl[3,5‐bis{(benzoxycarbonyl)imino}]benzoate, an AB2‐type blocked isocyanate monomer with ester group, were synthesized for the first time. Using the same starting compound, 3,5‐bis{(benzoxycarbonyl)imino}benzylalcohol, an AB2‐type blocked isocyanate monomer, was synthesized through a highly efficient short‐cut route. Step‐growth polymerization of these monomers at individually optimized experimental conditions results in the formation of hyperbranched polyurethanes with and without ether and ester groups. Copolymerizations of these monomers with functionally similar AB monomers were also carried out. The molecular weights of the polymers were determined using GPC and the values (Mw) were found to vary from 1.5 × 104 to 1.2 × 106. While hyperbranched polyurethanes having no ether or ester group were found to be thermally stable up to 217 °C, hyperbranched poly(ether–urethane)s and poly(ester–urethane)s were found to be thermally stable up to 245 and 300 °C, respectively. Glass transition temperature (Tg) of polyurethane was reduced significantly when introducing ether groups into the polymer chain, whereas Tg was not observed even up to 250 °C in the case of poly(ester–urethane). Hyperbranched polyurethanes derived from all the three different AB2 monomers were soluble in highly polar solvents and the copolymers showed improved solubility. Polyethylene glycol monomethyl ether of molecular weight 550 and decanol were used as end‐capping groups, which were seen to affect the thermal, solution, and solubility properties of polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3877–3893, 2007  相似文献   

8.
A conjugated polymer with a butatriene segment in the main chain, poly(biphenyl‐4,4′‐diyl‐1,4‐bis(4‐dodecyloxyphenyl)buta‐1,2,3‐triene‐1,4‐diyl), was synthesized from 1,4‐bis(4‐bromophenyl)‐1,4‐bis(4‐dodecyloxyphenyl)buta‐1,2,3‐triene by dehalogenative polycondensation using Ni(cod)2. The polymer was well soluble in usual organic solvents such as CHCl3 and THF. Structural analyses and characterizations were carried out by IR, NMR, UV‐Vis, PL, and Raman spectroscopy, as well as electrical conductivity. It is suggested that π‐conjugation is extended to some degree through biphenylylene and butatrienylene linkages.  相似文献   

9.
A convenient and cost‐effective strategy for synthesis of hyperbranched poly(ester‐amide)s from commercially available dicarboxylic acids (A2) and multihydroxyl secondary amine (CB2) has been developed. By optimizing the conditions of model reactions, the AB2‐type intermediates were formed dominantly during the initial reaction stage. Without any purification, the AB2 intermediate was subjected to thermal polycondensation in the absence of any catalyst to prepare the aliphatic and semiaromatic hyperbranched poly(ester‐amide)s bearing multi‐hydroxyl end‐groups. The FTIR and 1H NMR spectra indicated that the polymerization proceeded in the proposed way. The DBs of the resulting polymers were confirmed by a combination of inverse‐gated decoupling 13C NMR, and DEPT‐135 NMR techniques. The DBs of the hyperbranched poly(ester‐amide)s were in the range of 0.44–0.73, depending on the structure of the monomers used. The hyperbranched polymers exhibited moderate molecular weights with relatively broad distributions determined by SEC. All the polymers displayed low inherent viscosity (0.11–0.25 dL/g) due to the branched nature. Structural and end‐group effects on the thermal properties of the hyperbranched polymers were investigated using DSC. The thermogravimetric analysis revealed that the resulting polymers exhibit reasonable thermal stability. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5077–5092, 2008  相似文献   

10.
A series of ABx‐type triarylphosphine oxide monomers, bis‐(4‐fluorophenyl)‐(4‐hydroxyphenyl)phosphine oxide ( 4a ), bis‐(3,4‐difluorophenyl)‐(4‐hydroxyphenyl)phosphine oxide ( 4b ), and 4‐hydroxyphenyl‐bis‐(3,4,5‐trifluorophenyl)phosphine oxide ( 4c ) were prepared, characterized, and polymerized under nucleophilic aromatic substitution conditions [N‐methylpyrrolidone (NMP), K2CO3] to provide the corresponding hyperbranched poly(arylene ether phosphine oxide)s with number‐average molecular weights ranging from 9200 to 14,600 Da. NMR spectroscopic analysis indicated the presence of highly branched products with an approximate degree of branching of 0.57. The polymers were soluble in a variety of typical organic solvents and displayed excellent thermal stability. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1456–1467, 2002  相似文献   

11.
The results of the kinetic study of melt and solution polymerization at the 1,3-dipolar cycloaddition reaction of the AB2 monomer – 2-azido-4,6-bis(prop-2-yn-1-yloxy)-[1,3,5]-triazine (ABPOT) are presented in this work as well as the results of the 13C-NMR characterization of the obtained hyperbranched poly([1,2,3]-triazole-[1,3,5]-triazine)s. It is established, that the first-shell substitution effect during polyaddition process and unusual high degree of branching (up to 0.9) of polymers synthesized in melt are held.  相似文献   

12.
4‐Nitro‐1,2,3‐triazole was found to react with tert‐butanol in concentrated sulfuric acid to yield 1‐tert‐butyl‐4‐nitro‐1,2,3‐triazole as the only reaction product, whereas tert‐butylation and tritylation of 4‐nitro‐1,2,3‐triazole in presence of catalytic amount of sulfuric acid in benzene was found to provide mixtures of isomeric 1‐ and 2‐alkyl‐4‐nitro‐1,2,3‐triazoles with predominance of N2‐alkylated products. A new methodology for preparation of 1‐alkyl‐5‐nitro‐1,2,3‐triazoles from 1‐tert‐butyl‐4‐nitro‐1,2,3‐triazole via exhaustive alkylation followed by removal of tert‐butyl group from intermediate triazolium salts was demonstrated by the example of preparation of 1‐methyl‐5‐nitro‐1,2,3‐triazole.  相似文献   

13.
Here, we demonstrate a simple but highly efficient method for the synthesis of multifunctionalized pyrrolo[2,3‐d]pyrimidines containing 1,4‐disubstituted 1,2,3‐triazole derivative coupled with various amines ( 10a , 10b , 10c , 10d , 10e , 10f , 10g ) and alcohol ( 10h ) to obtain final compounds ( 11a , 11b , 11c , 11d , 11e , 11f , 11g , 11h ) with reasonable to excellent yields (25% to 94%). The newly synthesized compounds were characterized by IR, 1HNMR, 13CNMR, and mass spectroscopy analysis.  相似文献   

14.
J147 [N‐(2,4‐dimethylphenyl)‐2,2,2‐trifluoro‐N′‐(3‐methoxybenzylidene)acetohydrazide] has recently been reported as a promising new drug for the treatment of Alzheimer's disease. The X‐ray structures of seven new 1,4‐diaryl‐5‐trifluoromethyl‐1H‐1,2,3‐triazoles, namely 1‐(3,4‐dimethylphenyl)‐4‐phenyl‐5‐trifluoromethyl‐1H‐1,2,3‐triazole (C17H14F3N3, 1 ), 1‐(3,4‐dimethylphenyl)‐4‐(3‐methoxyphenyl)‐5‐trifluoromethyl‐1H‐1,2,3‐triazole (C18H16F3N3O, 2 ), 1‐(3,4‐dimethylphenyl)‐4‐(4‐methoxyphenyl)‐5‐trifluoromethyl‐1H‐1,2,3‐triazole (C18H16F3N3O, 3 ), 1‐(2,4‐dimethylphenyl)‐4‐(4‐methoxyphenyl)‐5‐trifluoromethyl‐1H‐1,2,3‐triazole (C18H16F3N3O, 4 ), 1‐[2,4‐bis(trifluoromethyl)phenyl]‐4‐(3‐methoxyphenyl)‐5‐trifluoromethyl‐1H‐1,2,3‐triazole (C18H10F9N3O, 5 ), 1‐(3,4‐dimethoxyphenyl)‐4‐(3,4‐dimethoxyphenyl)‐5‐trifluoromethyl‐1H‐1,2,3‐triazole (C19H18F3N3O4, 6 ) and 3‐[4‐(3,4‐dimethoxyphenyl)‐5‐(trifluoromethyl)‐1H‐1,2,3‐triazol‐1‐yl]phenol (C17H14F3N3O3, 7 ), have been determined and compared to that of J147 . B3LYP/6‐311++G(d,p) calculations have been performed to determine the potential surface and molecular electrostatic potential (MEP) of J147 , and to examine the correlation between hydrazone J147 and the 1,2,3‐triazoles, both bearing a CF3 substituent. Using MEPs, it was found that the minimum‐energy conformation of 4 , which is nearly identical to its X‐ray structure, is closely related to one of the J147 seven minima.  相似文献   

15.
Three‐component heterocyclization of 4‐amino‐5‐carboxamido‐1,2,3‐triazole, thiopyran‐3‐one‐1,1‐dioxide, and aromatic aldehydes under ultrasonic and microwave irradiation was studied. Regardless of the reaction parameters, 5,6,7,9‐tetrahydro‐4H‐thiopyrano[3,2‐d][1,2,3]triazolo[1,5‐a]pyrimidine‐8,8‐dioxides were isolated as sole reaction products whose structures were proven with help of NMR data and X‐ray analysis.  相似文献   

16.
A series of 21 2‐(4‐(hydroxyalkyl)‐1H ‐1,2,3‐triazol‐1‐yl)‐N ‐substituted propanamides (1,4‐disubstituted 1,2,3‐triazoles having amide linkage and hydroxyl group) have been synthesized from click reaction between terminal alkyne and 2‐azido‐N ‐substituted propanamide (generated in situ from reaction of 2‐bromo‐N ‐substituted propanamide and sodium azide) and characterized by FTIR, 1H NMR, 13C NMR spectroscopy, and HRMS. All the newly synthesized triazoles were tested in vitro for antimicrobial activity against four bacterial cultures – Escherichia coli , Enterobacter aerogenes , Klebsiella pneumoniae , and Staphylococcus aureus – and two fungal cultures – Candida albicans and Aspergillus niger . The synthesized 1,4‐disubstituted 1,2,3‐triazoles displayed moderate to good antimicrobial potential against the tested strains.  相似文献   

17.
A novel and highly efficient method for the synthesis of 1,4‐disubstituted‐1H‐1,2,3‐triazoles by copper‐catalyzed azide‐alkyne cycloaddition has been developed. This economic and sustainable protocol uses a readily available Benedict's solution/Vitamin C catalyst system affording a wide range of 1,4‐disubstituted‐1H‐1,2,3‐triazoles under mild conditions.  相似文献   

18.
In this contribution, we present new reduction‐cleavable hyperbranched disulfide bonds‐containing poly(ester triazole)s with limited intramolecular cyclization, which can be synthesized by the Cu(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) of A2 monomer of dipropargyl 3,3′‐dithiobispropionate and B3 monomer of tris(hydroxymethyl)ethane tri(4‐azidobutanoate). The hyperbranched poly(ester triazole)s possess numerous terminal groups and weight‐average molecular weight up to 20,400 g mol?1 with a polydispersity index in the range 1.57–2.17. The CuAAC introduces rigid triazole units into the backbones of hyperbranched poly(ester triazole)s and reduces intramolecular cyclization, which is proved by topological analysis and 1H NMR spectroscopy. The disulfide bonds on backbones endow the reduction‐cleavable feature to the hyperbranched poly(ester triazole)s at the presence of dithiothreitol. It gives a novel and convenient methodology for the synthesis of reduction‐responsive functional polymer with controlled topologies, and the reduction‐cleavable hyperbranched poly(ester triazole)s with limited intramolecular cyclization are expected to possess potential in the application of stimuli‐responsive anticancer drug nanocarriers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2374–2380  相似文献   

19.
Treatment of 1,4‐disubstituted 1,2,3‐triazoles with aryl chlorides in the presence of potassium carbonate under palladium catalysis and microwave irradiation at 250 °C for 15 min leads to arylation of the triazole at the 5‐position. A variety of functional groups, including ester and hydroxy groups, are compatible. The procedure is suitable for the regioselective preparation of trisubstituted triazoles. Microwave irradiation accelerates the reaction, thus allowing the rapid synthesis of trisubstituted triazoles, which are difficult to synthesize selectively.  相似文献   

20.
An efficient one‐pot synthesis of 1,2,3‐triazoles via the three‐component coupling reaction between propargyl bromide, secondary amines, and 3‐azidopyridine in the presence of CuI as catalyst has been presented. The reaction is highly regioselective and afforded novel 1,4‐disubstituted‐1,2,3‐triazoles in excellent yields by the [3 + 2] Huisgen cycloaddition reaction. This method avoids isolation and handling of terminal acetylenes. The ease of purification has made this methodology clean and safe for the synthesis of 1,2,3‐triazoles with a broad scope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号