共查询到20条相似文献,搜索用时 0 毫秒
1.
Masahiro Yamaguchi Kanako Miyano Shigeto Hirayama Yusuke Karasawa Kaori Ohshima Eiko Uezono Akane Komatsu Miki Nonaka Hideaki Fujii Keisuke Yamaguchi Masako Iseki Masakazu Hayashida Yasuhito Uezono 《Molecules (Basel, Switzerland)》2022,27(20)
Opioid receptors (ORs) are classified into three types (μ, δ, and κ), and opioid analgesics are mainly mediated by μOR activation; however, their use is sometimes restricted by unfavorable effects. The selective κOR agonist nalfurafine was initially developed as an analgesic, but its indication was changed because of the narrow safety margin. The activation of ORs mainly induces two intracellular signaling pathways: a G-protein-mediated pathway and a β-arrestin-mediated pathway. Recently, the expectations for κOR analgesics that selectively activate these pathways have increased; however, the structural properties required for the selectivity of nalfurafine are still unknown. Therefore, we evaluated the partial structures of nalfurafine that are necessary for the selectivity of these two pathways. We assayed the properties of nalfurafine and six nalfurafine analogs (SYKs) using cells stably expressing κORs. The SYKs activated κORs in a concentration-dependent manner with higher EC50 values than nalfurafine. Upon bias factor assessment, only SYK-309 (possessing the 3S-hydroxy group) showed higher selectivity of G-protein-mediated signaling activities than nalfurafine, suggesting the direction of the 3S-hydroxy group may affect the β-arrestin-mediated pathway. In conclusion, nalfurafine analogs having a 3S-hydroxy group, such as SYK-309, could be considered G-protein-biased κOR agonists. 相似文献
2.
Karol Wtorek Piotr F. J. Lipiski Anna Adamska-Bartomiejczyk Justyna Piekielna-Ciesielska Jarosaw Sukiennik Alicja Kluczyk Anna Janecka 《Molecules (Basel, Switzerland)》2022,27(1)
Our formerly described pentapeptide opioid analog Tyr-c[D-Lys-Phe-Phe-Asp]NH2 (designated RP-170), showing high affinity for the mu (MOR) and kappa (KOR) opioid receptors, was much more stable than endomorphine-2 (EM-2) in the rat brain homogenate and displayed remarkable antinociceptive activity after central (intracerebroventricular) and peripheral (intravenous ) administration. In this report, we describe the further modification of this analog, which includes the incorporation of a β3-amino acid, (R)- and (S)-β3-Lys, instead of D-Lys in position 2. The influence of such replacement on the biological properties of the obtained analogs, Tyr-c[(R)-β3-Lys-Phe-Phe-Asp]NH2 (RP-171) and Tyr-c[(S)-β3-Lys-Phe-Phe-Asp]NH2, (RP-172), was investigated in vitro. Receptor radiolabeled displacement and functional calcium mobilization assays were performed to measure binding affinity and receptor activation of the new analogs. The obtained data revealed that only one of the diastereoisomeric peptides, RP-171, was able to selectively bind and activate MOR. Molecular modeling (docking and molecular dynamics (MD) simulations) suggests that both compounds should be accommodated in the MOR binding site. However, in the case of the inactive isomer RP-172, fewer hydrogen bonds, as well as instability of the canonical ionic interaction to Asp147, could explain its very low MOR affinity. 相似文献
3.
Nurmaya Effendi Kenji Mishiro Kazuhiro Shiba Seigo Kinuya Kazuma Ogawa 《Molecules (Basel, Switzerland)》2021,26(1)
The purpose of this study is to develop peptide-based platelet-derived growth factor receptor β (PDGFRβ) imaging probes and examine the effects of several linkers, namely un-natural amino acids (D-alanine and β-alanine) and ethylene-glycol (EG), on the properties of Ga-DOTA-(linker)-IPLPPPRRPFFK peptides. Seven radiotracers, 67Ga-DOTA-(linker)-IPLPPPRRPFFK peptides, were designed, synthesized, and evaluated. The stability and cell uptake in PDGFRβ positive peptide cells were evaluated in vitro. The biodistribution of [67Ga]Ga-DOTA-EG2-IPLPPPRRPFFK ([67Ga]27) and [67Ga]Ga-DOTA-EG4-IPLPPPRRPFFK ([67Ga]28), which were selected based on in vitro stability in murine plasma and cell uptake rates, were determined in BxPC3-luc-bearing nu/nu mice. Seven 67Ga-labeled peptides were successfully synthesized with high radiochemical yields (>85%) and purities (>99%). All evaluated radiotracers were stable in PBS (pH 7.4) at 37 °C. However, only [67Ga]27 and [67Ga]28 remained more than 75% after incubation in murine plasma at 37 °C for 1 h. [67Ga]27 exhibited the highest BxPC3-luc cell uptake among the prepared radiolabeled peptides. As regards the results of the biodistribution experiments, the tumor-to-blood ratios of [67Ga]27 and [67Ga]28 at 1 h post-injection were 2.61 ± 0.75 and 2.05 ± 0.77, respectively. Co-injection of [67Ga]27 and an excess amount of IPLPPPRRPFFK peptide as a blocking agent can significantly decrease this ratio. However, tumor accumulation was not considered sufficient. Therefore, further probe modification is required to assess tumor accumulation for in vivo imaging. 相似文献
4.
Charlne Gadais Justyna Piekielna-Ciesielska Jolien De Neve Charlotte Martin Anna Janecka Steven Ballet 《Molecules (Basel, Switzerland)》2021,26(17)
Opioid agonists are well-established analgesics, widely prescribed for acute but also chronic pain. However, their efficiency comes with the price of drastically impacting side effects that are inherently linked to their prolonged use. To answer these liabilities, designed multiple ligands (DMLs) offer a promising strategy by co-targeting opioid and non-opioid signaling pathways involved in nociception. Despite being intimately linked to the Substance P (SP)/neurokinin 1 (NK1) system, which is broadly examined for pain treatment, the neurokinin receptors NK2 and NK3 have so far been neglected in such DMLs. Herein, a series of newly designed opioid agonist-NK2 or -NK3 antagonists is reported. A selection of reported peptidic, pseudo-peptidic, and non-peptide neurokinin NK2 and NK3 ligands were covalently linked to the peptidic μ-opioid selective pharmacophore Dmt-DALDA (H-Dmt-d-Arg-Phe-Lys-NH2) and the dual μ/δ opioid agonist H-Dmt-d-Arg-Aba-βAla-NH2 (KGOP01). Opioid binding assays unequivocally demonstrated that only hybrids SBL-OPNK-5, SBL-OPNK-7 and SBL-OPNK-9, bearing the KGOP01 scaffold, conserved nanomolar range μ-opioid receptor (MOR) affinity, and slightly reduced affinity for the δ-opioid receptor (DOR). Moreover, NK binding experiments proved that compounds SBL-OPNK-5, SBL-OPNK-7, and SBL-OPNK-9 exhibited (sub)nanomolar binding affinity for NK2 and NK3, opening promising opportunities for the design of next-generation opioid hybrids. 相似文献
5.
Justyna Piekielna-Ciesielska Roberto Artali Ammar A. H. Azzam David G. Lambert Alicja Kluczyk Luca Gentilucci Anna Janecka 《Molecules (Basel, Switzerland)》2021,26(1)
In recent years, G protein vs. β-arrestin biased agonism at opioid receptors has been proposed as an opportunity to produce antinociception with reduced adverse effects. However, at present this approach is highly debated, a reason why more information about biased ligands is required. While the practical relevance of bias in the case of µ-opioid receptors (MOP) still needs to be validated, it remains important to understand the basis of this bias of MOP (and other GPCRs). Recently, we reported two cyclopeptides with high affinity for MOP, the G protein biased Dmt-c[d-Lys-Phe-pCF3-Phe-Asp]NH2 (F-81), and the β-arrestin 2 biased Dmt-c[d-Lys-Phe-Asp]NH2 (C-33), as determined by calcium mobilization assay and bioluminescence resonance energy transfer-based assay. The biased character of F-81 and C-33 has been further analyzed in the [35S]GTPγS binding assay in human MOP-expressing cells, and the PathHunter enzyme complementation assay, used to measure β-arrestin 2 recruitment. To investigate the structural features of peptide-MOP complexes, we performed conformational analysis by NMR spectroscopy, molecular docking, and molecular dynamics simulation. These studies predicted that the two ligands form alternative complexes with MOP, engaging specific ligand–receptor contacts. This would induce different displays of the cytosolic side of the seven-helices bundle, in particular by stabilizing different angulations of helix 6, that could favor intracellular coupling to either G protein or β-arrestin. 相似文献
6.
Urszula Bchor Agnieszka Lizak Remigiusz Bchor Marcin Mczyski 《Molecules (Basel, Switzerland)》2022,27(17)
The hybrid peptides consisting of α and β-amino acids show great promise as peptidomimetics that can be used as therapeutic agents. Therefore, the development of new unnatural amino acids and the methods of their incorporation into the peptide chain is an important task. Here, we described our investigation of the possibility of 5-amino-3-methyl-isoxazole-4-carboxylic acid (AMIA) application in the solid phase peptide synthesis. This new unnatural β-amino acid, presenting various biological activities, was successfully coupled to a resin-bound peptide using different reaction conditions, including classical and ultrasonic agitated solid-phase synthesis. All the synthesized compounds were characterized by tandem mass spectrometry. The obtained results present the possibility of the application of this β-amino acid in the synthesis of a new class of bioactive peptides. 相似文献
7.
Dahae Lee Yuri Ko Changhyun Pang Yoon-Joo Ko You-Kyoung Choi Ki Hyun Kim Ki Sung Kang 《Molecules (Basel, Switzerland)》2022,27(1)
Armillariella tabescens (Scop.) Sing., a mushroom of the family Tricholomataceae, has been used in traditional oriental medicine to treat cholecystitis, improve bile secretion, and regulate bile-duct pressure. The present study evaluated the estrogen-like effects of A. tabescens using a cell-proliferation assay in an estrogen-receptor-positive breast cancer cell line (MCF-7). We found that the methanol extract of A. tabescens fruiting bodies promoted cell proliferation in MCF-7 cells. Using bioassay-guided fractionation of the methanol extract and chemical investigation, we isolated and identified four steroids and four fatty acids from the active fraction. All eight compounds were evaluated by E-screen assay for their estrogen-like effects in MCF-7 cells. Among the tested isolates, only (3β,5α,22E)-ergost-22-en-3-ol promoted cell proliferation in MCF-7 cells; this effect was mitigated by the ER antagonist, ICI 182,780. The mechanism underlying the estrogen-like effect of (3β,5α,22E)-ergost-22-en-3-ol was evaluated using Western blot analysis to detect the expression of extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), Akt, and estrogen receptor α (ERα). We found that (3β,5α,22E)-ergost-22-en-3-ol induced an increase in phosphorylation of ERK, PI3K, Akt, and ERα. Together, these experimental results suggest that (3β,5α,22E)-ergost-22-en-3-ol is responsible for the estrogen-like effects of A. tabescens and may potentially aid control of estrogenic activity in menopause. 相似文献
8.
Ekaterina A. Verochkina Nadezhda Victorovna Vchislo Igor B. Rozentsveig 《Molecules (Basel, Switzerland)》2021,26(14)
α-Functionalized α,β-unsaturated aldehydes is an important class of compounds, which are widely used in fine organic synthesis, biology, medicine and pharmacology, chemical industry, and agriculture. Some of the 2-substituted 2-alkenals are found to be the key metabolites in plant and animal cells. Therefore, the development of efficient methods for their synthesis attracts the attention of organic chemists. This review focusses on the recent advances in the synthesis of 2-functionally substituted 2-alkenals. The approaches to the preparation of α-alkyl α,β-unsaturated aldehydes are not included in this review. 相似文献
9.
Victor S. Batista Adriano Marques Gonalves Nailton M. Nascimento-Júnior 《Molecules (Basel, Switzerland)》2022,27(23)
The neuronal nicotinic acetylcholine receptors (nAChRs) belong to the ligand-gated ion channel (GLIC) group, presenting a crucial role in several biological processes and neuronal disorders. The α4β2 and α7 nAChRs are the most abundant in the central nervous system (CNS), being involved in challenging diseases such as epilepsy, Alzheimer’s disease, schizophrenia, and anxiety disorder, as well as alcohol and nicotine dependencies. In addition, in silico-based strategies may contribute to revealing new insights into drug design and virtual screening to find new drug candidates to treat CNS disorders. In this context, the pharmacophore maps were constructed and validated for the orthosteric sites of α4β2 and α7 nAChRs, through a docking-based Comparative Intermolecular Contacts Analysis (dbCICA). In this sense, bioactive ligands were retrieved from the literature for each receptor. A molecular docking protocol was developed for all ligands in both receptors by using GOLD software, considering GoldScore, ChemScore, ASP, and ChemPLP scoring functions. Output GOLD results were post-processed through dbCICA to identify critical contacts involved in protein-ligand interactions. Moreover, Crossminer software was used to construct a pharmacophoric map based on the most well-behaved ligands and negative contacts from the dbCICA model for each receptor. Both pharmacophore maps were validated by using a ROC curve. The results revealed important features for the ligands, such as the presence of hydrophobic regions, a planar ring, and hydrogen bond donor and acceptor atoms for α4β2. Parallelly, a non-planar ring region was identified for α7. These results can enable fragment-based drug design (FBDD) strategies, such as fragment growing, linking, and merging, allowing an increase in the activity of known fragments. Thus, our results can contribute to a further understanding of structural subunits presenting the potential for key ligand-receptor interactions, favoring the search in molecular databases and the design of novel ligands. 相似文献
10.
Faisal Usman Hamid Saeed Shah Sumera Zaib Sirikhwan Manee Jahanzeb Mudassir Ajmal Khan Gaber El-Saber Batiha Khamael M. Abualnaja Dalal Alhashmialameer Imtiaz Khan 《Molecules (Basel, Switzerland)》2021,26(21)
Type 2 diabetes mellitus has been a major health issue with increasing morbidity and mortality due to macrovascular and microvascular complications. The urgent need for improved methods to control hyperglycemic complications reiterates the development of innovative preventive and therapeutic treatment strategies. In this perspective, xanthone compounds in the pericarp of the mangosteen fruit, especially α-mangostin (MGN), have been recognized to restore damaged pancreatic β-cells for optimal insulin release. Therefore, taking advantage of the robust use of nanotechnology for targeted drug delivery, we herein report the preparation of MGN loaded nanosponges for anti-diabetic therapeutic applications. The nanosponges were prepared by quasi-emulsion solvent evaporation method. Physico-chemical characterization of formulated nanosponges with satisfactory outcomes was performed with Fourier transform infra-red (FTIR) spectroscopy, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Zeta potential, hydrodynamic diameter, entrapment efficiency, drug release properties, and stability studies at stress conditions were also tested. Molecular docking analysis revealed significant interactions of α-glucosidase and MGN in a protein-ligand complex. The maximum inhibition by nanosponges against α-glucosidase was observed to be 0.9352 ± 0.0856 µM, 3.11-fold higher than acarbose. In vivo studies were conducted on diabetic rats and plasma glucose levels were estimated by HPLC. Collectively, our findings suggest that MGN-loaded nanosponges may be beneficial in the treatment of diabetes since they prolong the antidiabetic response in plasma and improve patient compliance by slowly releasing MGN and requiring less frequent doses, respectively. 相似文献
11.
Jorge L. Díaz-Gmez Ines Neundorf Laura-Margarita Lpez-Castillo Fabiola Castorena-Torres Sergio O. Serna-Saldívar Silverio García-Lara 《Molecules (Basel, Switzerland)》2020,25(22)
In this study, we characterized three novel peptides derived from the 19 kDa α-zein, and determined their bioactive profile in vitro and developed a structural model in silico. The peptides, 19ZP1, 19ZP2 and 19ZP3, formed α-helical structures and had positive and negative electrostatic potential surfaces (range of −1 to +1). According to the in silico algorithms, the peptides displayed low probabilities for cytotoxicity (≤0.05%), cell penetration (10–33%) and antioxidant activities (9–12.5%). Instead, they displayed a 40% probability for angiotensin-converting enzyme (ACE) inhibitory activity. For in vitro characterization, peptides were synthesized by solid phase synthesis and tested accordingly. We assumed α-helical structures for 19ZP1 and 19ZP2 under hydrophobic conditions. The peptides displayed antioxidant activity and ACE-inhibitory activity, with 19ZP1 being the most active. Our results highlight that the 19 kDa α-zein sequences could be explored as a source of bioactive peptides, and indicate that in silico approaches are useful to predict peptide bioactivities, but more structural analysis is necessary to obtain more accurate data. 相似文献
12.
Francine Medjiofack Djeujo Valeria Francesconi Maddalena Gonella Eugenio Ragazzi Michele Tonelli Guglielmina Froldi 《Molecules (Basel, Switzerland)》2022,27(2)
Diabetes mellitus is characterized by chronic hyperglycemia that promotes ROS formation, causing severe oxidative stress. Furthermore, prolonged hyperglycemia leads to glycation reactions with formation of AGEs that contribute to a chronic inflammatory state. This research aims to evaluate the inhibitory activity of α-mangostin and four synthetic xanthenone derivatives against glycation and oxidative processes and on α-glucosidase, an intestinal hydrolase that catalyzes the cleavage of oligosaccharides into glucose molecules, promoting the postprandial glycemic peak. Antiglycation activity was evaluated using the BSA assay, while antioxidant capacity was detected with the ORAC assay. The inhibition of α-glucosidase activity was studied with multispectroscopic methods along with inhibitory kinetic analysis. α-Mangostin and synthetic compounds at 25 µM reduced the production of AGEs, whereas the α-glucosidase activity was inhibited only by the natural compound. α-Mangostin decreased enzymatic activity in a concentration-dependent manner in the micromolar range by a reversible mixed-type antagonism. Circular dichroism revealed a rearrangement of the secondary structure of α-glucosidase with an increase in the contents of α-helix and random coils and a decrease in β-sheet and β-turn components. The data highlighted the anti-α-glucosidase activity of α-mangostin together with its protective effects on protein glycation and oxidation damage. 相似文献
13.
Shinhui Lee Woog Jung Sanung Eom Hye Duck Yeom Heui-Dong Park Junho H. Lee 《Molecules (Basel, Switzerland)》2021,26(9)
Betulinic acid (BA) is a major constituent of Zizyphus seeds that have been long used as therapeutic agents for sleep-related issues in Asia. BA is a pentacyclic triterpenoid. It also possesses various anti-cancer and anti-inflammatory effects. Current commercially available sleep aids typically use GABAergic regulation, for which many studies are being actively conducted. However, few studies have focused on acetylcholine receptors that regulate wakefulness. In this study, we utilized BA as an antagonist of α3β4 nicotinic acetylcholine receptors (α3β4 nAChRs) known to regulate rapid-eye-movement (REM) sleep and wakefulness. Effects of BA on α3β4 nAChRs were concentration-dependent, reversible, voltage-independent, and non-competitive. Site-directed mutagenesis and molecular-docking studies confirmed the binding of BA at the molecular level and showed that the α3 subunit L257 and the β4 subunit I263 residues affected BA binding. These data demonstrate that BA can bind to a binding site different from the site for the receptor’s ligand, acetylcholine (ACh). This suggests that BA may be an effective antagonist that is unaffected by large amounts of ACh released during wakefulness and REM sleep. Based on the above experimental results, BA is likely to be a therapeutically useful sleep aid and sedative. 相似文献
14.
Jung-Il Kang Youn Kyung Choi Sang-Chul Han Hyunwoo Nam Gilwoo Lee Ji-Hoon Kang Young Sang Koh Jin Won Hyun Eun-Sook Yoo Hee-Kyoung Kang 《Molecules (Basel, Switzerland)》2022,27(7)
Various studies addressing the increasing problem of hair loss, using natural products with few side effects, have been conducted. 5-bromo-3,4-dihydroxybenzaldehyde (BDB) exhibited anti-inflammatory effects in mouse models of atopic dermatitis and inhibited UVB-induced oxidative stress in keratinocytes. Here, we investigated its stimulating effect and the underlying mechanism of action on hair growth using rat vibrissa follicles and dermal papilla cells (DPCs), required for the regulation of hair cycle and length. BDB increased the length of hair fibers in rat vibrissa follicles and the proliferation of DPCs, along with causing changes in the levels of cell cycle-related proteins. We investigated whether BDB could trigger anagen-activating signaling pathways, such as the Wnt/β-catenin pathway and autophagy in DPCs. BDB induces activation of the Wnt/β-catenin pathway through the phosphorylation of GSG3β and β-catenin. BDB increased the levels of autophagic vacuoles and autophagy regulatory proteins Atg7, Atg5, Atg16L, and LC3B. We also investigated whether BDB inhibits the TGF-β pathway, which promotes transition to the catagen phase. BDB inhibited the phosphorylation of Smad2 induced by TGF-β1. Thus, BDB can promote hair growth by modulating anagen signaling by activating Wnt/β-catenin and autophagy pathways and inhibiting the TGF-β pathway in DPCs. 相似文献
15.
Gyeong Do Park Yoon-Hee Cheon So Young Eun Chang Hoon Lee Myeung Su Lee Ju-Young Kim Hae Joong Cho 《Molecules (Basel, Switzerland)》2021,26(9)
Osteoporosis is a systemic metabolic bone disorder that is caused by an imbalance in the functions of osteoclasts and osteoblasts and is characterized by excessive bone resorption by osteoclasts. Targeting osteoclast differentiation and bone resorption is considered a good fundamental solution for overcoming bone diseases. β-boswellic acid (βBA) is a natural compound found in Boswellia serrata, which is an active ingredient with anti-inflammatory, anti-rheumatic, and anti-cancer effects. Here, we explored the anti-resorptive effect of βBA on osteoclastogenesis. βBA significantly inhibited the formation of tartrate-resistant acid phosphatase-positive osteoclasts induced by receptor activator of nuclear factor-B ligand (RANKL) and suppressed bone resorption without any cytotoxicity. Interestingly, βBA significantly inhibited the phosphorylation of IκB, Btk, and PLCγ2 and the degradation of IκB. Additionally, βBA strongly inhibited the mRNA and protein expression of c-Fos and NFATc1 induced by RANKL and subsequently attenuated the expression of osteoclast marker genes, such as OC-STAMP, DC-STAMP, β3-integrin, MMP9, ATP6v0d2, and CtsK. These results suggest that βBA is a potential therapeutic candidate for the treatment of excessive osteoclast-induced bone diseases such as osteoporosis. 相似文献
16.
Lisa Ngu Debarpita Ray Samantha S. Watson Penny J. Beuning Mary Jo Ondrechen George A. ODoherty 《Molecules (Basel, Switzerland)》2022,27(8)
A diastereoselective synthesis of the β-anomer of glycinamide ribonucleotide (β-GAR) has been developed. The synthesis was accomplished in nine steps from D-ribose and occurred in 5% overall yield. The route provided material on the multi-milligram scale. The synthetic β-GAR formed was remarkably resistant to anomerization both in solution and as a solid. 相似文献
17.
Zhanyong Wang Ting Yang Dongfang Liu Rongxiang Chen Nan Wang Hong Liu Jiarong Li Kaikai Wang Hongxin Liu 《Molecules (Basel, Switzerland)》2022,27(18)
An efficient, three-component reaction of aldehydes and benzofuran-3-ones was developed. This process provides a new approach for the preparation of synthetically and biologically important spirobenzofuran-3-one derivatives with moderate-to-good yields under mild conditions. A switch of intramolecular to intermolecular domino Michael–aldol–lactonization leading to differential product formation was achieved by different NHCs catalysis. 相似文献
18.
Zubao Gan Deyun Cui Hongyun Zhang Ying Feng Liying Huang Yingying Gui Lu Gao Zhenlei Song 《Molecules (Basel, Switzerland)》2022,27(15)
(Ph3C)[BPh(F)4]-catalyzed Hosomi-Sakurai allylation of allylsilanes with β,γ-unsaturated α-ketoesters has been developed to give γ,γ-disubstituted α-ketoesters in high yields with excellent chemoselectivity. Preliminary mechanistic studies suggest that trityl cation dominates the catalysis, while the silyl cation plays a minor role. 相似文献
19.
Yuno Lee Sae-Bom Yoon Hyowon Hong Hyun Young Kim Daeyoung Jung Byoung-San Moon Woo-Kyu Park Sunkyung Lee Hyukjin Kwon Jihyeong Park Heeyeong Cho 《Molecules (Basel, Switzerland)》2022,27(12)
Direct inhibitors of glycogen synthase kinase 3β (GSK3β) have been investigated and reported for the past 20 years. In the search for novel scaffold inhibitors, 3000 compounds were selected through structure-based virtual screening (SBVS), and then high-throughput enzyme screening was performed. Among the active hit compounds, pyrazolo [1,5-a]pyrimidin-7-amine derivatives showed strong inhibitory potencies on the GSK3β enzyme and markedly activated Wnt signaling. The result of the molecular dynamics (MD) simulation, enhanced by the upper-wall restraint, was used as an advanced structural query for the SBVS. In this study, strong inhibitors designed to inhibit the GSK3β enzyme were discovered through SBVS. Our study provides structural insights into the binding mode of the inhibitors for further lead optimization. 相似文献
20.
Romeo Toko Feunaing Alfred Ngenge Tamfu Abel Joel Yaya Gbaweng Larissa Mekontso Magnibou Fidele Ntchapda Celine Henoumont Sophie Laurent Emmanuel Talla Rodica Mihaela Dinica 《Molecules (Basel, Switzerland)》2023,28(1)
Diabetes mellitus is a metabolic disorder which is one of the leading causes of mortality and morbidities in elderly humans. Chronic diabetes can lead to kidney failure, blindness, limb amputation, heart attack and stroke. Physical activity, healthy diets and medications can reduce the incidence of diabetes, so the search for more efficient antidiabetic therapies, most especially from natural products, is a necessity. Herein, extract from roots of the medicinal plant Pterocarpus erinaceus was purified by column chromatography and afforded ten compounds which were characterized by EIMS, HR-FAB-MS, 1D and 2D NMR techniques. Amongst them were, a new trimeric derivative of epicatechin, named 2,3-Epoxyprocyanidin C1 (1); two pentacyclic triterpenoids, friedelin (2) and betulin (3); angolensin (4); flavonoids such as 7-methoxygenistein (5), 7-methoxydaidzein (6), apigenin 7-O-glucoronide (8) and naringenin 7-O-β-D-glucopyranoside (9); and an ellagic acid derivative (10). The extract and compounds were evaluated for their antidiabetic potential by α-amylase and α-glucosidase inhibitory assays. IC50 values of compound 7 (48.1 ± 0.9 µg/mL), compound 8 (48.6 ± 0.1 µg/mL), compound 9 (50.2 ± 0.5 µg/mL) and extract (40.5 ± 0.8 µg/mL) when compared to that of acarbose (26.4 ± 0.3 µg/mL) indicated good α-amylase inhibition. In the α-glucosidase assay, the extract (IC50 = 31.2 ± 0.1 µg/mL), compound 7 (IC50 = 39.5 ± 1.2 µg/mL), compound 8 (IC50 = 40.9 ± 1.3 µg/mL), compound 1 (IC50 = 41.6 ± 1.0 µg/mL), Compound 4 (IC50 = 43.4 ± 0.5 µg/mL), compound 5 (IC50 = 47.6 ± 0.9 µg/mL), compound 6 (IC50 = 46.3 ± 0.2 µg/mL), compound 7 (IC50 = 45.0 ± 0.8 µg/mL), compound 9 (IC50 = 44.8 ± 0.6 µg/mL) and compound 11 (IC50 = 47.5 ± 0.4 µg/mL) all had moderate-to-good inhibitions, compared to acarbose (IC50 = 22.0 ± 0.5 µg/mL). The ability to inhibit α-amylase and α-glucosidase indicates that P. erinaceus and its compounds can lower blood glucose levels by delaying hydrolysis of carbohydrates into sugars, thereby providing a source of natural antidiabetic remedy. 相似文献