共查询到4条相似文献,搜索用时 0 毫秒
1.
Olive pomace, the solid by-product derived from olive oil production consists of a high concentration of bioactive compounds with antioxidant activity, such as phenolic compounds, and their recovery by applying innovative techniques is a great opportunity and challenge for the olive oil industry. This study aimed to point out a new approach for the integrated valorization of olive pomace by extracting the phenolic compounds and protecting them by encapsulation or incorporation in nanoemulsions. Innovative assisted extraction methods were evaluated such as microwave (MAE), homogenization (HAE), ultrasound (UAE), and high hydrostatic pressure (HHPAE) using various solvent systems including ethanol, methanol, and natural deep eutectic solvents (NADESs). The best extraction efficiency of phenolic compounds was achieved by using NADES as extraction solvent and in particular the mixture choline chloride-caffeic acid (CCA) and choline chloride-lactic acid (CLA); by HAE at 60 °C/12,000 rpm and UAE at 60 °C, the total phenolic content (TPC) of extracts was 34.08 mg gallic acid (GA)/g dw and 20.14 mg GA/g dw for CCA, and by MAE at 60 °C and HHPAE at 600 MPa/10 min, the TPC was 29.57 mg GA/g dw and 25.96 mg GA/g dw for CLA. HAE proved to be the best method for the extraction of phenolic compounds from olive pomace. Microencapsulation and nanoemulsion formulations were also reviewed for the protection of the phenolic compounds extracted from olive pomace. Both encapsulation techniques exhibited satisfactory results in terms of encapsulation stability. Thus, they can be proposed as an excellent technique to incorporate phenolic compounds into food products in order to enhance both their antioxidative stability and nutritional value. 相似文献
2.
Many studies demonstrated that olive oil (especially extra virgin olive oil: EVOO) phenolic compounds are bioactive molecules with anti-cancer, anti-inflammatory, anti-aging and neuroprotective activities. These effects have been recently attributed to the ability of these compounds to induce epigenetics modifications such as miRNAs expression, DNA methylation and histone modifications. In this study, we systematically review and discuss, following the PRISMA statements, the epigenetic modifications induced by EVOO and its phenols in different experimental systems. At the end of literature search through “PubMed”, “Web of Science” and “Scopus”, 43 studies were selected.Among them, 22 studies reported data on miRNAs, 15 on DNA methylation and 13 on histone modification. Most of the “epigenomic” changes observed in response to olive oil phenols’ exposure were mechanistically associated with the cancer preventive and anti-inflammatory effects. In many cases, the epigenetics effects regarding the DNA methylation were demonstrated for olive oil but without any indication regarding the presence or not of phenols. Overall, the findings of the present systematic review may have important implications for understanding the epigenetic mechanisms behind the health effects of olive oil. However, generally no direct evidence was provided for the causal relationships between epigenetics modification and EVOO health related effects. Further studies are necessary to demonstrate the real physiological consequences of the epigenetics modification induced by EVOO and its phenolic compounds. 相似文献
3.
Stefania Balzan Barbara Cardazzo Enrico Novelli Lisa Carraro Federico Fontana Sarah Curr Matteo Laghetto Angela Trocino Gerolamo Xiccato Agnese Taticchi Luca Fasolato 《Molecules (Basel, Switzerland)》2021,26(14)
Olive vegetation water (OVW) is a by-product with a noticeable environmental impact; however, its polyphenols may be reused food and feed manufacture as high-value ingredients with antioxidant/antimicrobial activities. The effect of dietary supplementation with OVW polyphenols on the gut microbiota, carcass and breast quality, shelf life, and lipid oxidation in broiler chickens has been studied. Chicks were fed diets supplemented with crude phenolic concentrate (CPC) obtained from OVW (220 and 440 mg/kg phenols equivalent) until reaching commercial size. Cloacal microbial community (rRNA16S sequencing) was monitored during the growth period. Breasts were submitted to culture-dependent and -independent microbiological analyses during their shelf-life. Composition, fatty acid concentration, and lipid oxidation of raw and cooked thawed breasts were measured. Growth performance and gut microbiota were only slightly affected by the dietary treatments, while animal age influenced the cloacal microbiota. The supplementation was found to reduce the shelf life of breasts due to the growth of spoilers. Chemical composition and lipid oxidation were not affected. The hydroxytyrosol (HT) concentration varied from 178.6 to 292.4 ug/kg in breast muscle at the beginning of the shelf-life period. The identification of HT in meat demonstrates that the absorption and metabolism of these compounds was occurring efficiently in the chickens. 相似文献
4.
《Analytical letters》2012,45(16):2592-2609
Abstract In the present study, microwave-assisted extraction was compared with conventional approaches for the efficient extraction of juglone and other phenolics from Juglans regia bark. The effect of different solvents was also studied and ethyl acetate was found to be a better solvent in terms of juglone yield and stability. Further, a simple and fast RP-HPLC method was developed and validated for the determination of juglone and other bioactive phenolics like gallic acid, caffeic acid, quercetin, myricetin, and quercitrin in these extracts. In addition, the extracts were tested for antimicrobial activity against 16 microorganisms where all the extracts showed broad spectrum activity. 相似文献