首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methacrylate‐terminated polyisobutylenes (PIB‐MAs) were synthesized by transesterification of vinyl methacrylate by hydroxyl‐terminated polyisobutylenes (PIB‐OH) using Candida antarctica lipase B (Novozyme 435) catalyst in hexane at 50 °C. PIB CH2 CH2 CH2 OH and Glissopal OH, synthesized by anti‐Markovnikov hydrobromination of allyl‐terminated PIB and Glissopal®2300 followed by hydrolysis, were quantitatively converted into the corresponding PIB‐MAs. 1H and 13C NMR spectroscopy verified the formation of the expected structures. This “green” chemistry is a very promising methodology for polymer functionalization in general, and biomaterial synthesis in particular.

  相似文献   


2.
Well‐defined mono‐ and bifunctional, phenanthroline‐terminated poly(ethylene glycol) and polyisobutylene capable of polymer network formation were synthesized. The starting materials mono‐ and bi‐phenanthroline‐ (phen) terminated poly(ethylene glycols) (mPEG‐phen, phen‐PEG‐phen) and polyisobutylenes (PIB‐phen, phen‐PIB‐phen) were prepared by the Williamson synthesis and characterized by means of 1H NMR and MALDI‐TOF mass spectrometry. According to UV–Vis spectrophotometry and ESI‐TOF mass spectrometry, the phenanthroline‐terminated polymers underwent quantitative complex formation with ferrous ions in solution. The aqueous solution of mPEG‐phen shows self‐assembly behavior. Important parameters, such as critical micelle concentration and hydrodynamic radius of the aggregates were also determined. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2709–2715, 2010  相似文献   

3.
Research on novel implantable rubbery polyisobutylene‐based biomaterials carried out at the University of Akron during the past ∼15 years is outlined. Specific attention is paid to recent investigations focusing on the synthesis of semipermeable amphiphilic networks designed to be used as immunoisolatory membranes. The membranes envelop insulin‐producing living pig beta cells. They are biocompatible to the host (human) and the guest (beta cells) and remain permeable for many months in vivo. They are rubbery slippery, robust, sterilizable, optically transparent, with controlled pore dimensions that allow the in‐diffusion of glucose and nutrients, out‐diffusion of insulin and wastes, but they do not allow the entry of immunoproteins (IgG). The pores remain permeable for many months in vivo. The membranes are made by copolymerizig/crosslinking hydrophilic (meth)acrylates with methacrylate‐telechelic polyisobutylenes. Controlling the molecular weights of the constituent segments controls the pore sizes of the membranes. Immunoisolated pig beta cells enveloped in our membranes and implanted subcutaneously in a rat have corrected severe hyperglycemia.  相似文献   

4.
Results of studies on synthesis and properties of siloxane–urethane prepolymers as well as on selected properties of moisture‐cured silicone–urethanes have already been published. In this paper, some results of investigations of the effect of chemical structure of such silicone–urethane polymers on their phase seggregation investigated using mainly (TEM) transmission electron microscopy and small‐angle x‐ray scattering (SAXS) techniques are presented. It was found in TEM studies that in silicone‐urethanes obtained by moisture‐curing of NCO‐terminated prepolymers prepared from siloxane oligomer diols (SOD) and isophoronediisocyanate (IPDI), two factors determine the morphology of samples: length of siloxane chain and NCO/OH ratio. SAXS investigations showed that these silicone–urethanes had a lamellar structure. It was found that the long period of this structure changed from 4 to 9 nanometers as the siloxane chain length increased nine times. The increase of the long period correlated with the decrease of Young's modulus of the corresponding samples. TEM investigations of silicone–urethanes obtained by moisture‐curing of NCO‐terminated prepolymers prepared from the blends of SOD and polyoxypropylenediol (PPG) revealed complex morphology which depended on the SOD/PPG ratio. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
The end‐to‐end cyclization of telechelic polyisobutylenes (PIB's) toward cyclic polyisobutylenes is reported, using either ring‐closing metathesis (RCM) or the azide/alkyne‐“click”‐reaction. The first approach uses bisallyl‐telchelic PIB's (Mn = 1650, 3680, 9770 g mol?1) and Grubbs 1st‐, 2nd‐, and 3rd‐generation catalyst leading to cyclic PIB's in 60–80% yield, with narrow polydispersities (Mw/Mn = 1.25). Azide/alkyne‐“click”‐reactions of bisalkyne‐telechelic PIB's (Mn = 3840 and 9820 g mol?1) with excess of 1,11‐diazido‐undecane leads to the formation of mixtures of linear/cyclic PIB's under formation of oligomeric cycles. Subsequent reaction of the residual azide‐moieties in the linear PIB's with excess of alkyne‐telechelic PEO enables the chromatographic removal of the resulting linear PEO‐PIB‐block copolymers by column chromatography. Thus pure cyclic PIB's can be obtained using this double‐“click”‐method, devoid of linear contaminants. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 671–680, 2010  相似文献   

6.
We present the synthesis of nonsymmetric α‐ω‐functionalized polyisobutylenes (PIBs) bearing different functional moieties on their chain ends. Thus, on one chain end either, a short tri‐ethylene oxide chain (TEO) or a phosphine oxide ligand is attached, whereas the other chain end is substituted by hydrogen bonding moieties (thymine/2,6‐diaminotriazine). The nonsymmetric PIBs were synthesized via living cationic polymerization using methyl‐styrene epoxide as initiator, followed by quenching reaction with 3‐bromopropyl‐benzene. Subsequent bromide/azide exchange and the use of the azide/alkyne click reaction allowed the synthesis of (a) (α)‐TEO‐(ω)‐thymine‐telechelic PIB ( 7a ), (b) (α)‐triethyleneoxide‐(ω)‐triazine telechelic PIB ( 7b ), and (c) (α)‐phosphinoxide‐(ω)‐thymine‐telechelic PIB ( 13 ) with molecular weights Mn ~ 4000 g mol?1 and low polydispersities (Mw/Mn = 1.3). The chemical identity of the final structures was proven by extensive 1H NMR investigations and matrix‐assisted laser desorption/ionization‐mass spectroscopy (MALDI). The presented method for the first time offers a simple and highly versatile approach toward supramolecular nonsymmetric α‐ω‐functionalized PIB. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
New linear and three-arm star polyisobutylenes carrying two and three terminal styryl endgroups, i.e., Fn = 2.0 and 3.0, respectively, have been prepared. The synthesis of these styryl-telechelic polyisobutylenes involved Friedel-Crafts alkylation by linear and/or three-arm star polyisobutylenes carrying tertiary chlorine endgroups of (2-bromoethyl)benzene or /β-bromoisopropylbenzene followed by de-hydrobromination. According to model studies, 1H-NMR, and UV spectroscopy, the conversions are essentially quantitative. These new terminally di- and tri-styrenated polyisobutylenes may be useful for the preparation of block copolymers and as cross-linking materials.  相似文献   

8.
Williamson type ether reactions were utilized for a high yield reaction of 4′‐chloro‐2,2′:6′,2″‐terpyridine with α,ω‐dihydroxy‐functionalized poly(ethylene oxide) and poly(oxytetramethylene)s to obtain bis(terpyridine)‐terminated telechelics. The completeness of the functionalization was proven by NMR spectroscopy, GPC and MALDI‐TOF‐MS investigations. The addition of transition metal ions resulted in a polyaddition polymerization leading to the formation of extended metallo‐supramolecular polymers, as proven by UV/VIS spectroscopy titration experiments.  相似文献   

9.
Highly reactive polyisobutylenes (HRPIBs) with very large proportion (up to 95 mol%) of exo‐double bond end groups and number average molecular weight (Mn) of 5400–8500 Dalton (Da) could be successfully synthesized by the selective cationic polymerization of isobutylene (IB) from the mixed C4 fraction feed using o‐cresol/AlCl3 as initiating system at ?20°C. A possible mechanism was proposed for the cationic polymerization process. The presence of large weakly coordinating counteranion in propagating species could lead to decreasing the possibility of the side transfer reactions via carbenium ion arrangements. This o‐cresol/AlCl3 initiating system exhibited extremely high selectivity toward IB polymerization in the mixed C4 fraction feed and a good property for rapid β‐proton abstraction from ? C H 3 in the growing polyisobutylenes (PIBs) chain ends. High extent of α‐double bond end groups in HRPIBs prepared in the mixed C4 fraction feed could be comparable to that in those commercially produced by cationic polymerization of IB in inert solvent (e.g. hexane). To our knowledge, this is the first example to achieve HRPIBs via completely selective polymerization of IB from C4 mixed feed with AlCl3‐based initiating system, providing a potentially practical process for its simplicity and low costs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A chromophore terminated aliphatic polyether was obtained by polymer analogous conversion of the amino groups of Jeffamine® ED‐600 with 4‐[5‐(4‐acetoxy‐phenyl)‐3‐oxo‐penta‐1,4‐dienyl]benzoic acid and subsequent saponification of the acetoxy group. UV/Vis spectroscopic investigations showed that deprotonation of the chromophoric groups by organic or inorganic bases as for example poly(1,8‐octamethyleneacetamidine) and NaOH, respectively, results in a distinct bathochromic shift of the chromophores longest wavelength absorption band by about 100 nm. This effect is discussed in terms of polymer blends where the covalently bound chromophore can act as optical probe for acid–base interactions between the components.

  相似文献   


11.
Star‐shaped polystyrenes with acetyl glucose in the periphery and interior were synthesized via two‐steps, 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO)‐mediated living radical polymerizations. In the first step, styrene (St) was polymerized with 4‐[1′‐(2″,2″,6″,6″‐tetramethyl‐1″‐piperidinyloxy)ethyl]phenyl 2,3,4,6‐tetra‐O‐acetyl‐β‐D ‐glucopyranoside, 1 , at 120 °C to afford a TEMPO‐terminated polystyrene with acetyl glucose in the chain‐end, arm‐polymer 2 . Similarly, St was polymerized with 1‐phenyl‐1‐(2′,2′,6′,6′‐tetramethyl‐1′‐piperidinyloxy)ethane, 3 , to obtain a TEMPO‐terminated polystyrene, arm‐polymer 4 . In the second step, the coupling reaction of arm‐polymer 2 was performed using divinylbenzene (DVB) as a linking agent in m‐xylene at 138 °C, giving a star‐shaped polystyrene with acetyl glucose in the periphery, 5 . The coupling reaction of arm‐polymer 4 with DVB was carried out in the presence of 1 , which produced a star‐shaped polystyrene with acetyl glucose in the interior, 6 . Dynamic laser light scattering (DLS) measurements indicated that 5 and 6 existed as the particles in toluene with the average diameters ranging from 12–40 nm. The numbers of the arm (Narm) were 12–23 and 6–64 for 5 and 6 , respectively, which were determined by their isolated yields and static laser light scattering (SLS) measurements. The numbers of the acetyl glucose units (N1) were 12–23 and 9–104 for 5 and 6 , respectively, which were determined from specific rotation ([α]365). Finally, 5 and 6 were modified by deacetylation using sodium methoxide, producing star‐shaped polystyrenes with glucose in the periphery and interior, 7 and 8 , respectively. The final architectures were found to entrap a hydrophilic molecule at their glycoconjugated periphery or interior in good solvents for polystyrene such as chloroform. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4373–4381, 2005  相似文献   

12.
The present study describes the effect of NCO/OH ratio and addition of Cerium (Ce)‐Zirconium (Zr) mixed oxide nanoparticles on the properties of Hyperbranched Polyurethane Urea (HBPUU) Coatings. Initially a hydroxyl terminated hyperbranched polymer (HTBP) was synthesized through A3 + CB2 approach. The HTBP and Ce‐Zr nanopowder dispersed HTBP, both were reacted with hexamethylene diisocyanate (HDI) separately; at various NCO/OH eq. ratios to get different NCO terminated HBPU and HBPU/Ce‐Zr hybrid prepolymers. These prepolymers were used for the preparation of HBPUU and HBPUU/Ce‐Zr hybrid coating films through moisture curing. The techniques such as 1H NMR, 13C NMR, FT‐IR, and XRD have been used for structural information while Dynamic mechanical and thermal analyzer (DMTA), Thermogravimetric analysis (TGA) and Universal testing machine (UTM) have been used for evaluation of thermo‐mechanical properties. The combined spectroscopic investigations results indicate the formation of HBPUU network with a degree of branching of 76% while FT‐IR deconvolution results indicates the formation of more hydrogen bonded structure with increasing NCO/OH ratio. The XRD and FT‐IR studies confirm the presence of Ce‐Zr mixed nanoparticles in the HBPUU hybrids. As per TGA and DMTA analysis the thermal stability, char residue, storage modulus (E', material stiffness) and glass transition temperature (Tg), increases with increasing NCO/OH ratio and Ce‐Zr nanoparticle loading in HBPUU coatings. In general, UTM data suggest that the tensile strength increases and per cent elongation at break decreases with increasing the NCO/OH ratio and addition level of nanoparticles in HBPUU coatings. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A pyrene‐containing phenylboronic acid (PBA) functionalized low‐molecular‐weight hydrogelator was synthesized with the aim to develop glucose‐sensitive insulin release. The gelator showed the solvent imbibing ability in aqueous buffer solutions of pH values, ranging from 8–12, whereas the sodium salt of the gelator formed a hydrogel at physiological pH 7.4 with a minimum gelation concentration (MGC) of 5 mg mL?1. The aggregation behavior of this thermoreversible hydrogel was studied by using microscopic and spectroscopic techniques, including transmission electron microscopy, FTIR, UV/Vis, luminescence, and CD spectroscopy. These investigations revealed that hydrogen bonding, π–π stacking, and van der Waals interactions are the key factors for the self‐assembled gelation. The diol‐sensitive PBA part and the pyrene unit in the gelator were judiciously used in fluorimetric sensing of minute amounts of glucose at physiological pH. The morphological change of the gel due to addition of glucose was investigated by scanning electron microscopy, which denoted the glucose‐responsive swelling of the hydrogel. A rheological study indicated the loss of the rigidity of the native gel in the presence of glucose. Hence, the glucose‐induced swelling of the hydrogel was exploited in the controlled release of insulin from the hydrogel. The insulin‐loaded hydrogel showed thixotropic self‐recovery property, which hoisted it as an injectable soft composite. Encouragingly, the gelator was found to be compatible with HeLa cells.  相似文献   

14.
A mixed‐valence cluster of cobalt(II) hexacyanoferrate and fullerene C60‐enzyme‐based electrochemical glucose sensor was developed. A water insoluble fullerene C60‐glucose oxidase (C60‐GOD) was prepared and applied as an immobilized enzyme on a glassy carbon electrode with cobalt(II) hexacyanoferrate for analysis of glucose. The glucose in 0.1 M KCl/phosphate buffer solution at pH = 6 was measured with an applied electrode potential at 0.0 mV (vs Ag/AgCl reference electrode). The C60‐GOD‐based electrochemical glucose sensor exhibited efficient electro‐catalytic activity toward the liberated hydrogen peroxide and allowed cathodic detection of glucose. The C60‐GOD electrochemical glucose sensor also showed quite good selectivity to glucose with no interference from easily oxidizable biospecies, e.g. uric acid, ascorbic acid, cysteine, tyrosine, acetaminophen and galactose. The current of H2O2 reduced by cobalt(II) hexacyanoferrate was found to be proportional to the concentration of glucose in aqueous solutions. The immobilized C60‐GOD enzyme‐based glucose sensor exhibited a good linear response up to 8 mM glucose with a sensitivity of 5.60 × 102 nA/mM and a quite short response time of 5 sec. The C60‐GOD‐based glucose sensor also showed a good sensitivity with a detection limit of 1.6 × 10‐6 M and a high reproducibility with a relative standard deviation (RSD) of 4.26%. Effects of pH and temperature on the responses of the immobilized C60‐GOD/cobalt(II) hexacyanoferrate‐based electrochemical glucose sensor were also studied and discussed.  相似文献   

15.
We designed a novel water soluble topological structure polymer‐ferrocene‐ terminated hyperbranched polyurethane (HPU‐Fc) with good water solubility. The redox behaviors and the electrochemical kinetics parameters of HPU‐Fcs were explored by cyclic voltammetry (CV) according to electrochemical principle. The topological structure polymer was applied for the design and engineering of non‐enzymatic glucose sensor. The designed sensor showed good response to glucose concentration with good stability, favorable accuracy and high selectivity. The electrode was also used to detect glucose in blood samples, and the glucose contents detected by the electrode were in good agreement with those from the hospital where a common automatic biochemical analyzer (HF240–300) was used. This finding makes HPU‐Fc a promising biosensor for directly sensing glucose.  相似文献   

16.
Well‐defined linear furan‐protected maleimide‐terminated poly(ethylene glycol) (PEG‐MI), tetramethylpiperidine‐1‐oxyl‐terminated poly(ε‐caprolactone) (PCL‐TEMPO), and azide‐terminated polystyrene (PS‐N3) or ‐poly(N‐butyl oxanorbornene imide) (PONB‐N3) were ligated to an orthogonally functionalized core ( 1 ) in a two‐step reaction mode through triple click reactions. In a first step, Diels–Alder click reaction of PEG‐MI with 1 was performed in toluene at 110 °C for 24 h to afford α‐alkyne‐α‐bromide‐terminated PEG (PEG‐alkyne/Br). As a second step, this precursor was subsequently ligated with the PCL‐TEMPO and PS‐N3 or PONB‐N3 in N,N‐dimethylformamide at room temperature for 12 h catalyzed by Cu(0)/Cu(I) through copper‐catalyzed azide‐alkyne cycloaddition and nitroxide radical coupling click reactions, yield resulting ABC miktoarm star polymers in a one‐pot mode. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
Novel AB crosslinked polymer (ABCP) networks were synthesized from telechelic 4‐vinylbenzyl carbamate terminated polyurethanes and monomers such as styrene, 4‐vinylpyridine, methyl methacrylate and butyl acrylate. Telechelic 4‐vinylbenzyl carbamate terminated polyurethanes were synthesized from polypropylene glycol‐based NCO‐terminated polyurethane and vinylbenzyl alcohol. Effect of changing the molecular weight of polypropylene glycol on the static and dynamic mechanical properties of ABCP networks from polyurethane‐polymethyl methacrylate was studied in detail. Dynamic mechanical thermal analysis results show that polymethyl methacrylate and polystyrene‐based ABCPs have good damping over a broad temperature range. ABCP networks prepared from 4‐vinylbenzyl carbamate terminated polyurethane and different monomers such as methyl methacrylate, butyl acrylate and styrene exhibit single tan δmax value which implies excellent interlocking between the two polymers present in the ABCP networks. Static mechanical studies showed that methyl methacrylate and styrene‐based ABCP networks exhibit better tensile properties compared to other ABCP networks from butyl acrylate and 4‐vinyl pyridine monomers. Thermogravimetric analysis results revealed that the ABCP networks showed an improved thermal stability. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Synthesis of cysteine‐terminated linear polystyrene (PS)‐b‐poly(ε‐caprolactone) (PCL)‐b‐poly(methyl methacrylate) (PMMA)/or poly(tert‐butyl acrylate)(PtBA)‐b‐poly(ethylene glycol) (PEG) copolymers was carried out using sequential quadruple click reactions including thiol‐ene, copper‐catalyzed azide–alkyne cycloaddition (CuAAC), Diels–Alder, and nitroxide radical coupling (NRC) reactions. N‐acetyl‐L ‐cysteine methyl ester was first clicked with α‐allyl‐ω‐azide‐terminated PS via thiol‐ene reaction to create α‐cysteine‐ω‐azide‐terminated PS. Subsequent CuAAC reaction with PCL, followed by the introduction of the PMMA/or PtBA and PEG blocks via Diels–Alder and NRC, respectively, yielded final cysteine‐terminated multiblock copolymers. By 1H NMR spectroscopy, the DPns of the blocks in the final multiblock copolymers were found to be close to those of the related polymer precursors, indicating that highly efficient click reactions occurred for polymer–polymer coupling. Successful quadruple click reactions were also confirmed by gel permeation chromatography. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
POSS‐functionalized polyisobutylenes (PIBs) were synthesized by carbocationic polymerization using an epoxy‐POSS/TiCl4 initiating system in hexane/methyl chloride (60:40 v/v) solvent mixture at −80 °C. 1H NMR spectroscopy verified the incorporation of one epoxy‐POSS per polymer chain. Light scattering and TEM analysis demonstrated the formation of 50–100 nm sized aggregates and micron‐sized clusters.

  相似文献   


20.
Proton n.m.r. signals for two types of olefinic end groups, -CH2C(CH3)?CH2 (δ4.68 and δ4.87) and -CH?C(CH3)2 (δ5.21), have been observed in high molecular weight polyisobutylenes. Comparable amounts of both these end groups exist in commercial and laboratory prepared samples of polyisobutylenes contrary to previous reports that the former group is by far predominant. That different catalysts produce different relative concentrations of these end groups is demonstrated. Evidence for the presence of a third type of unsaturation from the -CH2C(CH2)?CH2- structure is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号