首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factors affecting the syntheses of high‐molecular‐weight poly(2,5‐dialkyl‐1,4‐phenylene vinylene) by the acyclic diene metathesis polymerization of 2,5‐dialkyl‐1,4‐divinylbenzenes [alkyl = n‐octyl ( 2 ) and 2‐ethylhexyl ( 3 )] with a molybdenum or ruthenium catalyst were explored. The polymerizations of 2 by Mo(N‐2,6‐Me2C6H3) (CHMe2 Ph)[OCMe(CF3)2]2 at 25 °C was completed with both a high initial monomer concentration and reduced pressure, affording poly(p‐phenylene vinylene)s with low polydispersity index values (number‐average molecular weight = 3.3–3.65 × 103 by gel permeation chromatography vs polystyrene standards, weight‐average molecular weight/number‐average molecular weight = 1.1–1.2), but the polymerization of 3 was not completed under the same conditions. The synthesis of structurally regular (all‐trans), defect‐free, high‐molecular‐weight 2‐ethylhexyl substituted poly(p‐phenylene vinylene)s [poly 3 ; degree of monomer repeating unit (DPn) = ca. 16–70 by 1H NMR] with unimodal molecular weight distributions (number‐average molecular weight = 8.30–36.3 × 103 by gel permeation chromatography, weight‐average molecular weight/number‐average molecular weight = 1.6–2.1) and with defined polymer chain ends (as a vinyl group, ? CH?CH2) was achieved when Ru(CHPh)(Cl)2(IMesH2)(PCy3) or Ru(CH‐2‐OiPr‐C6H4)(Cl)2(IMesH2) [IMesH2 = 1,3‐bis(2,4,6‐trimethylphenyl)‐2‐imidazolidinylidene] was employed as a catalyst at 50 °C. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6166–6177, 2005  相似文献   

2.
The ruthenium(II) complexes [Ru(R)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh) are formed on reaction of IPr·CS(2) with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] (BTD = 2,1,3-benzothiadiazole) or [Ru(C(C≡CPh)=CHPh)Cl(CO)(PPh(3))(2)] in the presence of ammonium hexafluorophosphate. Similarly, the complexes [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) are formed in the same manner when ICy·CS(2) is employed. The ligand IMes·CS(2) reacts with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] to form the compounds [Ru(R)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh). Two osmium analogues, [Os(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) and [Os(C(C≡CPh)=CHPh)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) were also prepared. When the more bulky diisopropylphenyl derivative IDip·CS(2) is used, an unusual product, [Ru(κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IDip)Cl(CO)(PPh(3))(2)](+), with a migrated vinyl group, is obtained. Over extended reaction times, [Ru(CH=CHC(6)H(4)Me-4)Cl(BTD)(CO)(PPh(3))(2)] also reacts with IMes·CS(2) and NH(4)PF(6) to yield the analogous product [Ru{κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IMes}Cl(CO)(PPh(3))(2)](+)via the intermediate [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+). Structural studies are reported for [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)]PF(6) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)]PF(6).  相似文献   

3.
RuHCl(CO)(PCy3)2 ( 1 ) dissolved in 1-butyl-3-methylimidazolium tetrafluoroborate ( 2 ) molten salt is able to reduce selectively NBR to HNBR under hydrogen partial pressures between 10 and 40 bar at 100–160°C in a typical two-phase catalytic reaction. Reaction rates between 0.059 (mmol Ru)−1 · min−1 and 1.65 (mmol Ru)−1 · min−1 were obtained depending on the reaction parameters and increasing with the volume of the molten salt. The overall process has an apparent activation energy of 47 ± 3 kJ · mol−1. The recovered ionic catalyst solution can be reused several times without significant changes in the catalytic performance (selectivity and activity).  相似文献   

4.
Neutral half‐sandwich η6p ‐cymene ruthenium(II) complexes of general formula [Ru(η6p ‐cymene)Cl(L)] (HL = monobasic O, N bidendate benzoylhydrazone ligand) have been synthesized from the reaction of [Ru(η6p ‐cymene)(μ‐Cl)Cl]2 with acetophenone benzoylhydrazone ligands. All the complexes have been characterized using analytical and spectroscopic (Fourier transform infrared, UV–visible, 1H NMR, 13C NMR) techniques. The molecular structures of three of the complexes have been determined using single‐crystal X‐ray diffraction, indicating a pseudo‐octahedral geometry around the ruthenium(II) ion. All the ruthenium(II) arene complexes were explored as catalysts for transfer hydrogenation of a wide range of aromatic, cyclic and aliphatic ketones with 2‐propanol using 0.1 mol% catalyst loading, and conversions of up to 100% were obtained. Further, the influence of other variables on the transfer hydrogenation reaction, such as base, temperature, catalyst loading and substrate scope, was also investigated.  相似文献   

5.
Two new aminophosphines – furfuryl‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3O] ( 1 ) and thiophene‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3S] ( 2 ) – were prepared by the reaction of chlorodicyclohexylphosphine with furfurylamine and thiophene‐2‐methylamine. Reaction of the aminophosphines with [Ru(η6p‐cymene)(μ‐Cl)Cl]2 or [Ru(η6‐benzene)(μ‐Cl)Cl]2 gave corresponding complexes [Ru(Cy2PNHCH2–C4H3O)(η6p‐cymene)Cl2] ( 1a ), [Ru(Cy2PNHCH2–C4H3O)(η6‐benzene)Cl2] ( 1b ), [Ru(Cy2PNHCH2–C4H3S)(η6p‐cymene)Cl2] ( 2a ) and [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] ( 2b ), respectively, which are suitable catalyst precursors for the transfer hydrogenation of ketones. In particular, [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] acts as a good catalyst, giving the corresponding alcohols in 98–99% yield in 30 min at 82 °C (up to time of flight ≤ 588 h?1). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The ring‐opening metathesis polymerization (ROMP) of norbornenes containing acetyl‐protected glucose [2,3,4,6‐tetra‐O‐acetyl‐glucos‐1‐O‐yl 5‐norbornene‐2‐carboxylate ( 1 )] and maltose [2,3,6,2′,3′,4′,6′‐hepta‐O‐acetyl‐maltos‐1‐O‐yl 5‐norbornene‐2‐carboxylate ( 2 )] was explored in the presence of Mo(N‐2,6‐iPr2C6H3)(CHCMe2Ph)(OtBu)2 ( A ), Ru(CHPh)(Cl)2(PCy3)2 ( B ; Cy = cyclohexyl), and Ru(CHPh)(Cl)2(IMesH2)(PCy3) ( C ; IMesH2 = 1,3‐dimesityl‐4,5‐dihydromidazol‐2‐ylidene). The polymerizations promoted by B and A proceeded in a living fashion with exclusive initiation efficiency, and the resultant polymers possessed number‐average molecular weights that were very close to those calculated on the basis of the monomer/initiator molar ratios and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.18) in all cases. The observed catalytic activity of B was strongly dependent on both the initial monomer concentration and the solvent employed, whereas the polymerization initiated with A was completed efficiently even at low initial monomer concentrations. The polymerization with C also took place efficiently, and even the polymerization with 1000 equiv of 1 was completed within 2 h. First‐order relationships between the propagation rates and the monomer concentrations were observed for all the polymerization runs, and the estimated rate constants at 25 °C increased in the following order: A > C > B . On the basis of these results, we concluded that ROMP with A was more suitable than ROMP with B or C for the efficient and precise preparation of polymers containing carbohydrates. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4248–4265, 2004  相似文献   

7.
A series of vinyl, aryl, acetylide and silyl complexes [Ru(R)(kappa2-MI)(CO)(PPh3)2] (R = CH=CH2, CH=CHPh, CH=CHC6H4CH3-4, CH=CH(t)Bu, CH=2OH, C(C triple bond CPh)=CHPh, C6H5, C triple bond CPh, SiMe2OEt; MI = 1-methylimidazole-2-thiolate) were prepared from either [Ru(R)Cl(CO)(PPh3)2] or [Ru(R)Cl(CO)(BTD)(PPh3)2](BTD = 2,1,3-benzothiadiazole) by reaction with the nitrogen-sulfur mixed-donor ligand, 1-methyl-2-mercaptoimidazole (HMI), in the presence of base. In the same manner, [Os(CH=CHPh)(kappa2-MI)(CO)(PPh3)2] was prepared from [Os(CH=CHPh)(CO)Cl(BTD)(PPh3)2]. The in situ hydroruthenation of 1-ethynylcyclohexan-1-ol by [RuH(CO)Cl(BTD)(PPh3)2] and subsequent addition of the HMI ligand and excess sodium methoxide yielded the dehydrated 1,3-dienyl complex [Ru(CH=CHC6H9)(kappa2-MI)(CO)(PPh3)2]. Dehydration of the complex [Ru(CH=CHCPh2OH)(kappa2-MI)(CO)(PPh3)2] with HBF4 yielded the vinyl carbene [Ru(=CHCH=CPh2)(kappa2-MI)(CO)(PPh3)2]BF4. The hydride complexes [MH(kappa2-MI)(CO)(PPh3)2](M = Ru, Os) were obtained from the reaction of HMI and KOH with [RuHCl(CO)(PPh3)3] and [OsHCl(CO)(BTD)(PPh3)2], respectively. Reaction of [Ru(CH=CHC6H4CH3-4)(kappa2-MI)(CO)(PPh3)2] with excess HC triple bond CPh leads to isolation of the acetylide complex [Ru(C triple bond CPh)(kappa2-MI)(CO)(PPh3)2], which is also accessible by direct reaction of [Ru(C triple bond CPh)Cl(CO)(BTD)(PPh3)2] with 1-methyl-2-mercaptoimidazole and NaOMe. The thiocarbonyl complex [Ru(CPh = CHPh)Cl(CS)(PPh3)2] reacted with HMI and NaOMe without migration to yield [Ru(CPh= CHPh)(kappa2-MI)(CS)(PPh3)2], while treatment of [Ru(CH=CHPh)Cl(CO)2(PPh3)2] with HMI yielded the monodentate acyl product [Ru{eta(1)-C(=O)CH=CHPh}(kappa2-MI)(CO)(PPh3)2]. The single-crystal X-ray structures of five complexes bearing vinyl, aryl, acetylide and dienyl functionality are reported.  相似文献   

8.
Treatment of [Ru(CHR)Cl2(PCy3)2] (Cy = cyclohexyl) with Tl[N(Pr2iPO)2] and AgLOEt (LOEt = [CpCo{P(O)(OEt)2}3]) afforded the Ru carbene complexes [Ru(CHPh)(PCy3)Cl{N(Pr2iPO)2}] (1) and [LOEtRu(CHR)(PCy3)Cl] (2), respectively. Chloride abstraction of complex 2 with TlPF6 in MeCN afforded [LOEtRu(CHPh)(PCy3)(MeCN)][PF6] (3). Complexes 1 and 2 are capable of catalyzing ring-closing metathesis of diethyl 1,2-diallylmalonate. The crystal structure of complex 2 has been determined.  相似文献   

9.
The kinetics of the formation of poly(carbosiloxane), as well as of alkyl-substituted poly(siloxane), by Karstedt's catalyst catalyzed hydrosilylation were investigated. Linear poly(carbosiloxane), poly[(1,1,3,3-tetramethyldisiloxanyl)ethylene], (PTMDSE), was obtained by hydrosilylation of 1,3-divinyltetramethyldisiloxane (DVTMDS) and 1,1,3,3-tetramethyldisiloxane (TMDS), while alkyl-substituted poly(siloxane), poly(methyldecylsiloxane), (PMDS), was synthesized by hydrosilylation of poly(methylhydrosiloxane) (PMHS) and 1-decene. To investigate the kinetics of PTMDSE formation, two series of experiments were performed at reaction temperatures ranging from 25 to 56 °C and with catalyst concentrations ranging from 7.0 × 10−6 to 3.1 × 10−5 mol Pt/mol CHCH2. A series of experiments was performed at reaction temperatures ranging from 28 to 48 °C, with catalyst concentrations of 7.0 ×10−6 mol of Pt per mol of CHCH2, when kinetics of PMDS formation was investigated. All reactions were carried out in bulk, with equimolar amounts of the reacting Si H and CHCH2 groups. The course of the reactions was monitored by following the disappearance of the Si H bands using quantitative infrared spectroscopy. The results obtained showed typical first order kinetics for the PTMDSE formation, consistent with the proposed reaction mechanism. In the case of PMDS an induction period occurred at lower reaction temperatures, but disappeared at 44 °C and the rate of Si H conversion also started to follow the first-order kinetics. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2246–2258, 2007  相似文献   

10.
The water‐soluble phosphine ligands, 1,3,5‐triaza‐7‐phosphatricyclo[3.3.1.13,7]decane (tpa) and 1‐alkyl‐1‐azonia‐3,5‐diaza‐7‐phosphatricyclo[3.3.1.13,7]decane iodides (Rtpa+I), with alkyl=methyl(mtpa+I), ethyl (etpa+I) and n‐propyl, (ptpa+I), and mtpa+Cl react with [Rh2Cl2(CO)4] giving the rhodium(I) complexes [RhCl(CO)(tpa)2], [RhI(CO)(Rtpa+I)2], [RhCl‐­(CO)(mtpa+Cl)3] and [RhI(CO)(Rtpa+I)3]. The properties and reactivities of the complexes have been investigated using 1H and 31PNMR and IR spectroscopies. The five‐coordinate complexes in solutions show dynamic properties. The complexes are catalysts of the water‐gas shift reaction, the hydrogenation of CC and CO bonds, the hydroformylation of alkenes and the isomerization of unsaturated compounds. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
Propargyl (HCC CH2) and methyl radicals were produced through the 193‐nm excimer laser photolysis of mixtures of C3H3Cl/He and CH3N2CH3/He, respectively. Gas chromatographic and mass spectrometric (GC/MS) product analyses were employed to characterize and quantify the major reaction products. The rate constants for propargyl radical self‐reactions and propargyl‐methyl cross‐combination reactions were determined through kinetic modeling and comparative rate determination methods. The major products of the propargyl radical combination reaction, at room temperature and total pressure of about 6.7 kPa (50 Torr) consisted of three C6H6 isomers with 1,5‐hexadiyne(CHC CH2 CH2 CCH, about 60%); 1,2‐hexadiene‐5yne (CH2CC CH2 CCH, about 25%); and a third isomer of C6H6 (∼15%), which has not yet been, with certainty, identified as being the major products. The rate constant determination in the propargyl‐methyl mixed radical system yielded a value of (4.0 ± 0.4) × 10−11 cm3 molecule−1 s−1 for propargyl radical combination reactions and a rate constant of (1.5 ± 0.3) × 10−10 cm3 molecule−1 s−1 for propargyl‐methyl cross‐combination reactions. The products of the methyl‐propargyl cross‐combination reactions were two isomers of C4H6, 1‐butyne (about 60%) and 1,2‐butadiene (about 40%). © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 118–124, 2000  相似文献   

12.
Summary Phenylacetylene reacts stoichiometrically or in excess with the Ru—H bond of RuH(CO)(PPh3)2(L) (LH = 2-hydroxypyridine, 2-hydroxy-6-methylpyridine, acetylacetone, benzoylacetone, 2-hydroxyacetophenone, 2-hydroxypropiophenone, 2-hydroxybenzophenone and 4-methoxy-2-hydroxybenzophenone) in boiling benzene to give -vinylic or -vinylalkynyl complexes of the type Ru(CO)-(PPh3)2(L)(CH CHPh) and Ru(CO)(PPh3)2(L){C-(C CPh) CHPh} in good yield. The vinylic complex can also be obtained by reacting the sodio derivative of the chelating ligand with the 16e unsaturated complex, [Ru(CO)Cl(CH CHPh)(PPh3)2], in CH2Cl2/MeOH mixture at ambient temperature. These complexes have been characterized by elemental analyses, and i.r., 1H, 13C and 31P n.m.r. spectroscopy.N.C.L Communication No. 5404.  相似文献   

13.
The effect of the addition of H3PO4 on the ROMP activity of cyclooctene (COE) with first‐ [Cl2(PCy3)2Ru?CHPh] and second‐generation [(H2IMes)Cl2(PCy3)Ru?CHPh] Grubbs’ catalysts 1 and 4 (Cy=cyclohexyl, Ph=phenyl, Mes=2,4,6‐trimethylphenyl (mesityl)), their inhibited mixtures with 1‐methylimidazole (MIM), as well as their isolated bis‐N,N′‐dimethylaminopyridine (DMAP) derivatives [Cl2(PCy3)(DMAP)2Ru?CHPh)] ( 5 b ) and [Cl2(H2IMes)(DMAP)2Ru?CHPh] ( 7 b ) (DMAP=dimethylaminopyridine), a novel catalyst, has been investigated. The studies include the determination of their initiation rates, as well as a determination of the molecular weights and molecular weight distributions of the polymers obtained with these catalysts and catalyst mixtures from the exo‐7‐oxanorbornene derivative 11 . The structure of catalyst 7 b was confirmed by means of X‐ray diffraction. All N‐donor‐bearing catalysts or N‐donor‐containing catalyst mixtures not only exhibited elevated activity in the presence of acid, but also increased initiation rates. Using the reversible inhibition/activation protocol with MIM and H3PO4 enabled us to conduct controlled ROMP with catalyst 4 producing the isolated exo‐7‐oxanorbornene‐based polymer 12 with predetermined molecular weights and narrow molecular weight distributions. This effect was based on fast and efficient catalyst initiation in contrast to the parent catalyst 4 . Hexacoordinate complex 5 b also experienced a dramatic increase in initiation rates upon acid‐addition and the ROMP reactions became well‐controlled in contrast to the acid‐free reaction. In contrast, complex 7 b performs well‐controlled ROMP in the absence of acid, whereas the polymerization of the same monomer becomes less controlled in the presence of H3PO4. The closer evaluation of catalysts 5 b and 7 b demonstrated that their initiation rates exhibit a linear dependency on the substrate concentration in contrast to catalysts 1 and 4 . As a consequence, their initiation rates are determined by an associative step, not a dissociative step as seen for catalysts 1 and 4 . A feasible associative metathesis initiation mechanism is proposed.  相似文献   

14.
The capability of three chain‐transfer agents, O‐alkyl‐S‐(1‐ethoxycarbonyl)ethyl xanthates (CH3CHCO2C2H5)S(CS)OZ′, to control the free‐radical polymerization of styrene and ethyl acrylate by the MADIX process was examined. The reactivity of the xanthates varied according to the following trend: Z′  CH2CH3 < CH2CF3 < CH[P(O)(OEt)2]CF3. This change in reactivity allowed a lowering of the polydispersity index from 2.0 for Z′  CH2CH3 to 1.15 for Z′  CH[P(O)(OEt)2]CF3 in the case of the polymerization of styrene.

Evolution of M w/M n with conversion during the polymerization of ethyl acrylate in the presence of xanthates X1 , X2 and X3 . Reaction conditions: [EA]0 = 4.6 M , [X]0 = 5.75 × 10−2 M , [AIBN]0 = 1.72 × 10−3 M ; T = 80 °C ; solvent: toluene.  相似文献   


15.
Ruthenium(II)-Phthalocyaninates(1–): Synthesis and Properties of (Halo)(carbonyl)phthalocyaninato(1–)ruthenium(II) Brown-violet (halo)(carbonyl)phthalocyaninato(1–)ruthenium(II), [Ru(X)(CO)Pc?] (X = Cl, Br) is prepared by oxidation of [Ru(X)(CO)Pc2?]? with the corresponding halogen or dibenzoylperoxide. The eff. magnetic moment μeff = 1.74 (X = Cl), 1.68 μB (Br) confirms the presence of a low-spin RuII complex of the Pc? radical. Accordingly, only the first ring oxidation at ~0.64 V and the first ring reduction at ~ ?1.19 V is observed in the cyclovoltammogram of [Ru(X)(CO)Pc2?]?. The UV-VIS-NIR spectra characterizing a monomeric Pc? radical with intense π-π* transitions at 14500, 19800, 25100 and 33900 cm?1 are compared with those of [Ru(Cl)2Pc?] and of monomeric as well as dimeric [Zn(Cl)Pc?]. The IR and resonance Raman(RR) spectra are characteristic for a Pc? radical, too. Diagnostic in-plane vibrations of the Pc? ligand are in the IR spectrum at 1071, 1359, 1445 cm?1 and in the RR spectrum (λ0 = 488.0 nm) at 567, 1597 cm?1. v(C? O) at 1950 cm?1 and v(Ru? X) at 260 (X = Cl) resp. 184 cm?1 (X = Br) are observed only in the IR spectrum.  相似文献   

16.
Reactions of the bis(pyridine) complex (H2IMes)(Py)2(Cl)2Ru(=CHPh) and fluorous phosphines P(CH2CH2R(fn))3 (n = a, 6; b, 8; c, 10; R(fn) = (CF2)(n-1)CF3) give (H2IMes)(P(CH2CH2R(fn))3)(Cl)2Ru(=CHPh) (2a-c, 64-73%), which are analogs of Grubbs' second generation catalyst and effective alkene metathesis catalysts under organic monophasic and fluorous/organic biphasic conditions. The latter give rate accelerations, which are believed to arise from phase transfer of the dissociated fluorous phosphine.  相似文献   

17.
Treatment of [Ru(CHCHCH2PPh3)X(CO)(PPh3)2]+ (X=Cl, Br) with KTp (Tp=hydridotris(pyrazolyl)borate) and NaBPh4 produced [TpRu(CHCHCH2PPh3)(CO)(PPh3)]BPh4. Reaction of RuHCl(CO)(PPh3)3 with HCCCH(OEt)2 produced Ru(CHCHCH(OEt)2)Cl(CO)(PPh3)2, which reacted with KTp to give TpRu(CHCHCHO)(CO)(PPh3). Treatment of [TpRu(CHCHCH2PPh3)(CO)(PPh3)]BPh4 with NaN(SiMe3)2 and benzaldehyde produced TpRu(CHCHCHCHPh)(CO)(PPh3). The later complex was also produced when TpRu(CHCHCHO)(CO)(PPh3) was treated with PhCH2PPh3Cl/NaN(SiMe3)2. The bimetallic complex [TpRu(CO)(PPh3)]2(μ-CHCHCHCHC6H4CHCHCHCH) was obtained from the reaction of [TpRu(CHCHCH2PPh3)(CO)(PPh3)]BPh4 with NaN(SiMe3)2 and terephthaldicarboxaldehyde.  相似文献   

18.
设计了由1,3-二(2,6-二甲基苯基)-2-四氢咪唑基-苯亚甲基-三苯基膦-二氯合钌(7)和吡啶反应生成无膦型金属钌卡宾化合物1,3-二(2,6-二甲苯基)-2-四氢咪唑基-苯亚甲基-2-吡啶基-二氯合钌(8),8作为高效催化剂用于丙烯腈和烯丙基苯的交叉交互置换反应.新化合物7,8经核磁共振氢谱、碳谱和高分辨率质谱予以证实.  相似文献   

19.
The reactions of K[HB(pz)3] (pz = pyrazol-1-yl) with the coordinatively unsaturated σ-vinyl complexes [Ru(CRCHR)Cl(CO)(PPh3)2] (R = H, Me, C6H5) proceed with loss of a chloride and a phosphine ligand to provide the compounds [Ru(CRCHR)(CO)(PPh3){HB(pz)3}] in high yield. Similar treatment of the complex [Ru(C6H4Me-4)Cl(CO)(PPh3)2] leads to the related σ-aryl derivative [Ru(C6H4Me-4)(CO)(PPh3){HB(pz)3}] whilst the complex [RuClH(CO)(PPh3)3] treated successively with diphenylbutadiyne and K[HB(pz)3] provides the unusual derivative [Ru{C(CCPh)CHPh}(CO)(PPh3){HB(pz)3}].  相似文献   

20.
白晨曦  张文珍  何仁 《有机化学》2006,26(12):1700-1703
设计了由1,3-二(2,6-二甲基苯基)-2-四氢咪唑基-苯亚甲基-三苯基膦-二氯合钌(7)和吡啶反应生成无膦型金属钌卡宾化合物1,3-二(2,6-二甲苯基)-2-四氢咪唑基-苯亚甲基-2-吡啶基-二氯合钌(8), 8作为高效催化剂用于丙烯腈和烯丙基苯的交叉交互置换反应. 新化合物7, 8经核磁共振氢谱、碳谱和高分辨率质谱予以证实.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号