首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SiO2–poly(amidoamine) (PAMAM) dendrimer hybrids were synthesized via (1) a Michael addition reaction between the dendrimer and 3‐(trimethoxysilyl) propyl acrylate, (2) the dissolution of the formed compound in methanol, and (3) the mixing of the latter solution with a methanol solution of partly hydrolyzed tetraethylorthosilicate (TEOS) and its casting on a glass substrate. 1H NMR indicated that in the first step, 77% of the secondary amines were converted into tertiary amines when the fourth‐generation dendrimer was employed and 46% were converted when the second‐generation dendrimer was used. The final SiO2–PAMAM dendrimer hybrids were obtained via the hydrolysis and condensation of the compound obtained via the Michael addition and the methanol solution of partly hydrolyzed TEOS. The compartmentalized structure of the hybrids due to the compartments of the dendrimers could be controlled by changing the dendrimer and the amount of TEOS. Scanning electron microscopy and transmission electron microscopy micrographs provided information about the structure of the hybrids. Like the PAMAM dendrimer, the SiO2–PAMAM dendrimer hybrids exhibited a high metal ion complexing capacity because of the presence of the compartments of the dendrimer; they can be, however, much more easily handled, and, as demonstrated by thermogravimetric experiments, have much higher thermal resistance. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1443–1449, 2000  相似文献   

2.
We report the preparation, characterization, and mechanical properties of polyelectrolyte/phosphorus dendrimer multilayer microcapsules. The shells of these microcapsules are composed either by alternating poly(styrenesulfonate) (PSS) and positively charged dendrimer G4(NH+Et2Cl-)96 or by alternating poly(allylamine hydrochloride) (PAH) and negatively charged dendrimer G4(CH-COO-Na+)96. The same multilayers were constructed on planar support to examine their layer-by-layer growth and to measure the multilayer thickness. Surface plasmon resonance spectroscopy (SPR) showed regular linear growth of the assembly upon each bilayer deposited. We probe the mechanical properties of these polyelectrolyte/dendrimer microcapsules by measuring force-deformation curves with the atomic force microscope (AFM). The experiment suggests that they are much softer than PSS/PAH microcapsules studied before. This softening is attributed to an enhanced permeability of the polyelectrolyte/dendrimer multilayer shells as compared with multilayers formed by linear polyelectrolytes. In contrast, Young's modulus of both dendrimer-based multilayers was found to be on the same order as that of PSS/PAH multilayers.  相似文献   

3.
Two different methods for preparation of Cu2+-poly(amidoamine-organosilicon) (PAMAMOS) dendrimer-based network nanocomplexes were developed and small angle neutron scattering (SANS) and X-ray photoelectron spectroscopy (XPS) were used for elucidation of fine structure of the obtained products. It was found that the in situ preparation method, by which less than the limiting amount of Cu2+ for the given dendrimer generation was complexed with dissolved dendrimer before cross-linking, enabled precise templating of copper into the nanoscopic polyamidoamine (PAMAM) network domains only. The limiting amount of Cu2+ for networks with generation 4 PAMAM domains was found to be between 5 (by SANS) and 8 (by XPS) mass %, in good agreement with the 9 mass % value calculated for idealized perfect dendrimer structure. It was also found that exceeding this concentration limit resulted in partitioning of Cu2+ ions into the organosilicon (OS) network domains as well, probably because of possible complexation of cations with siloxane oxygens. Consistent with this, the diffusion method always resulted in random distribution of Cu2+ cations throughout the bulk of the penetrated network layer(s), but the depth of this penetration was time-dependent and it followed Type II diffusion kinetics. This enables convenient control of layer thickness and preparation of thin layers of metal-network nanocomplexes. XPS data strongly suggest preferential Cu2+-tert. N complexation with in the PAMAM network domains, and indicate an unexpected oxido-reduction process above a certain copper concentration (approximately 2 tert. N per Cu ion) that leads to the formation of Cu1+ and N+ species.  相似文献   

4.
Poly(ethyleneimine) (PEI) microcapsules were prepared via the method of glutaraldehyde (GA)‐mediated covalent layer‐by‐layer (LbL) assembly, which utilized GA to cross‐link the adsorbed PEI layer and to introduce free aldehyde group on the surface for the next PEI adsorption on MnCO3 microparticles, followed by core removal. Evidenced by ellipsometry, the PEI multilayers grew nearly linearly along with the layer number and their thickness was controlled at the nanometer scale. The hollow structure, morphology, and wall thickness were characterized by scanning electron microscopy (SEM), scanning force microscopy (SFM), and confocal laser scanning microscopy (CLSM), revealing that the capsule structure as well as the cut‐off molecular weight of the capsule wall could be tuned by the molecular weight of PEI. This offers a general and novel pathway to fabricate single component capsules with pre‐designed structure (size, shape, and wall thickness) and properties. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
A novel technique is described to investigate buried polymer/sizing/substrate interfacial regions, in situ, by localizing a fluorescent probe molecule in the sizing layer. Epoxy functional silane coupling agent multilayers were deposited on glass microscope cover slips and doped with small levels of a fluorescently labeled silane coupling agent (FLSCA). The emission of the grafted FLSCA was dependent on the silane layer thickness, showing blue-shifted emission with decreasing thickness. The fluorescent results suggest that thinner layers were more tightly bound to the glass surface. The layers were also characterized by scanning electron microscopy, contact angle, and thermogravimetric analysis (TGA). When the FLSCA-doped silane layers were immersed in epoxy resin, a blue shift in emission occurred during resin cure, indicating the potential to study interfacial chemistry, in situ. Thicker silane layers exhibited smaller fluorescence shifts during cure, suggesting incomplete resin penetration into the thickest silane layers.  相似文献   

6.
Nanostructured multilayers constituted by alternate metallic (gold) and organic (alkyldithiol) layers, and grafted onto glass or silicon substrates are prepared and analysed. Such complex layers could be of interest as a new type of surfaces but also as localized dissipative zones particularly in the field of adhesion science. The formation and the structure of these model systems are examined using a number of techniques such as atomic force microscopy (AFM), wetting analysis (contact angles), X‐ray photoelectron spectroscopy (XPS) and conductivity measurements. It is shown that, in terms of electrical conductivity, gold layers exhibit a percolation transition from an insulating granular structure to a conductive worm‐like structure at a threshold thickness of about 5 nm. XPS (and wettability) analyses clearly indicate that the fractional coverage of the gold surface is about 30% with alkyldithiol and that these molecules are either grafted in a stand‐up position or in the form of a loop. Moreover, a partial electrical connection between two successive gold layers is observed, confirming that the confined organic layer of alkyldithiol between them is too loosely organized to play the role of an insulating barrier. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
A novel liquid crystalline dendrimer with peripheral mesogenic units was successfully prepared. Azo-reaction and Williamson synthesis were employed in the preparation of the mesogenic unit 4-[4-(6-hydroxyhexyloxy)-phenylazo]nitrobenzene (M-NO2). A terminal Si-Cl functional carbosilane dendrimer based on pentaerythritol was used as dendritic scaffold and subsequently functionalized with the aforementioned groups. Investigation of the liquid crystalline properties of the mesogen-functionalized dendrimer PCSi-IG-NO2 by polarizing optical microscopy, DSC, and X-ray diffraction showed that it exhibits smectic E (SE) phase, different from the corresponding mesogenic unit, which shows nematic phase. Furthermore, the temperatures of both the melting point and the clearing point of the mesogen-functionalized dendrimer decrease, and the temperature region of the SE phase is wider than that of the nematic phase.  相似文献   

8.
Layer-by-layer self-assembly was used to prepare nanofilms of (2:1) MgAl-layered double hydroxide (LDH) nanoparticles and polyacrylic acid or sodium polystyrene sulfonate. The multilayers were attached to ~50-nm thick gold films on microscopy glass slides prepared by vacuum evaporation. The contact between the gold film and the multilayered films was mediated via surface modification with thiols, adsorption of poly(diallyl dimethyl ammonium) chloride (PDDA) or direct binding of the LDH particles. Surface plasmon resonance (SPR) spectra of the multilayered films were analyzed by fitting the Fresnel equations. The shifts in the SPR angle (SPR) due to the adsorption/deposition on the gold surface were used to evaluate the process of building up the multilayers. Strong surface/multilayer contact formed when electrostatic attraction and hydrophobic interaction were combined as in the case of mercaptopropanoic acid or PDDA sticking layers. The LDH suspension concentration strongly influenced the number of deposited layers. The multilayer films were investigated by reflection FT-IR spectroscopy.  相似文献   

9.
Abstract

Scanning confocal microscopy was used for contact angle measurement of individual microspheres. The measurements were carried out by using different laser‐scanned layers of the particle floating on the air–water interface. The ratio of the diameter for the cross‐section of the protruded area of the particle at the air–water interface to the actual diameter of the particle is used for contact angle measurements. Two systems, i.e., glass and polystyrene microspheres with diameters of 3–10 and 6 µm, respectively, with water were used for this investigation (this size range of particles are most relevant to inhalation applications). Using the developed methodology, contact angles of 27° and 41° were measured (with water) for glass and polystyrene particles, respectively. The theoretical error in contact angle measurement for the developed methodology is determined to be generally about 1° with a maximum of 3° for contact angle of particles ranging from 2 to 24 µm in size; the experimental error was 4–6°. The contact angles of glass and polystyrene particles were compared to those obtained from pendant drop method and confirmed.  相似文献   

10.
Temperature- and pH-sensitive poly(N-isopropylacrylamide)?Cco-acrylic acid (pNIPAm-co-AAc) microgels were deposited on glass substrates coated with polyelectrolyte multilayers composed of the polycation poly(allylamine hydrochloride) (PAH) and the polyanion poly(sodium 4-styrenesulfonate) (PSS). The microgel density and structure of the resultant films were investigated as a function of: (1) the number of PAH/PSS layers (layer thickness); (2) the charge on the outer layer of the polyelectrolyte multilayer film; and (3) the pH of microgel deposition solution. The resultant films were studied by differential interference contrast optical microscopy, atomic force microscopy, and scanning electron microscopy. It was found that the coverage of the microgels on the surface was a complex function of the pH of the deposition solution, the charge on the outer layer of the polyelectrolyte thin film and the PAH/PSS layer thickness; although it appears that microgel charge plays the biggest role in determining the resultant surface coverage.  相似文献   

11.
Using 2‐chloropropionamide derivative of poly(propyleneimine) dendrimer DAB‐dendr‐(NH2)32 (DAB‐32‐Cl) as the macroinitiator, atom transfer radical polymerization of styrene was successfully carried out in DMF medium. The monodisperse poly(propyleneimine)–polystyrene (dendrimer–PSt) particles with diameters smaller than 100 nm could be prepared. The morphology, size, and size distribution of the dendrimer–PSt particles were characterized by transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS). The effects of reaction temperature, the ratio of St/macroinitiator, and reaction time on the size, and size distribution of the dendrimer–PSt nanoparticles were investigated. In a selective solvent (DMF/H2O), polymers can self‐assemble into different aggregate configurations such as regular microsphere and wire‐like thread. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2658–2666, 2008  相似文献   

12.
Dendrimers are regularly branched molecular trees which are notoriously difficult to crystallize. Herein we report the crystal structure of a C‐fucosylated second generation peptide dendrimer as complex with lectin LecB in which the only dendrimer‐lectin contact is the LecB bound glycoside (PDB 6S5S). In contrast to a previously reported crystal structure of a first‐generation peptide dendrimer as LecB complex in which the dendrimer formed trimers connected by intermolecular β‐sheets (PDB 5D2A), the present structure features a globular monomeric state held together by intramolecular backbone hydrogen bonds and assembled into a non‐covalent dimer stabilized by hydrophobic contacts between leucine side‐chains and proline‐phenylalanine CH‐π stacking interactions. Molecular dynamics and circular dichroism studies suggest that this crystal structure resembles the structure of the peptide dendrimer in solution. Structures of a partially resolved dendrimer (PDB 6S5R) and of C‐fucosylated disulfide bridged peptide dimers connecting different LecB tetramers are also reported (PDB 6S7G, PDB 6S5P).  相似文献   

13.
Non‐porous P2 glass beads were etched with sodium hydroxide to increase the number of silanol groups that could be used to modify the surface. The etched glass beads were then functionalized with 3‐aminopropyltriethoxysilane (APS) and/or glycidoxypropyltrimethoxysilane (GPS). The surface of the glass beads were further modified with poly(acrylic acid) (PAA) by reacting the carboxyl groups on PAA with the amino groups of the pregrafted APS. The chemical modifications were characterized by FT‐IR spectroscopy, particle size analyzer and tensiometry for contact angle and porosity measurements. Five different molecular weight PAA polymers ranging from 2000 to 3,000,000 were grafted with less than expected increase of grafted PAA with molecular weight. The amount of APS and PAA on the surface was determined from thermogravimetric analysis and elemental analysis data. The surface properties of the surface modified glass beads were determined by measuring water and hexane penetration rate and contact angle. The surface morphology was examined by scanning electron microscopy. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
This study used refractometry, ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and dielectric analysis to assess the viscoelastic properties and phase behavior of blends containing 0–20% (w/w) 12‐tert‐butyl ester dendrimer in poly(methyl methacrylate) (PMMA). Dendritic blends were miscible up through 12%, exhibiting an intermediate glass‐transition temperature (Tg; α) between those of the two pure components. Interactions of PMMA C?O groups and dendrimer N? H groups contributed to miscibility. Tg decreased with increasing dendrimer content before phase separation. The dendrimer exhibited phase separation at 15%, as revealed by Rayleigh scattering in ultraviolet–visible spectra and the emergence of a second Tg in dielectric studies. Before phase separation, clear, secondary β relaxations for PMMA were observed at low frequencies via dielectric analysis. Apparent activation energies were obtained through Arrhenius characterization. A merged αβ process for PMMA occurred at higher frequencies and temperatures in the blends. Dielectric data for the phase‐separated dendrimer relaxation (αD) in the 20% blend conformed to Williams–Landel–Ferry behavior, which allowed the calculation of the apparent activation energy. The αD relaxation data, analyzed both before and after treatment with the electric modulus, compared well with neat dendrimer data, which confirmed that this relaxation was due to an isolated dendrimer phase. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1381–1393, 2001  相似文献   

15.
Zirconia/polydopamine (ZrO2/PDA) nanocomposite multilayer films were constructed on Si substrate via a novel nonelectrostatic layer‐by‐layer (NELBL) assembly technique. The building block of this technique is the newly reported dopamine molecule, which can be attached to almost all material surfaces and undergo oxidation‐polymerization to form PDA layers; more importantly, the outer hydroxyl groups of the PDA layer can chelated with certain inorganic oxide nanoparticles to generate oxide films. Thus, ZrO2/PDA nanocomposite multilayer films were fabricated by sequential NELBL deposition of PDA and ZrO2 nanoparticles. The formation of the ZrO2/PDA nanocomposite multilayer films was monitored by the water contact angle (WCA) and ellipsometric thickness measurements, while the microstructure of the fabricated films was analyzed by means of atomic force microscope (AFM), field emission scanning electron microscope (FESEM), X‐ray photoelectron spectrum (XPS), and X‐ray diffraction (XRD) analysis. The mechanical and anticorrosion behaviors of the annealed ZrO2/PDA nanocomposite multilayers were found to be greatly enhanced as compared with that of the annealed homogeneous ZrO2 film. The better mechanical and anticorrosion behaviors of the annealed ZrO2/PDA nanocomposite multilayers than the annealed homogeneous ZrO2 film may be closely related to their special microstructure. Namely, the organic–inorganic hybrid microstructure of the annealed ZrO2/PDA nanocomposite multilayers may largely account for the increased nanohardness and corrosion resistance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Influence of assembly pH on compression and Ag nanoparticle synthesis of polyelectrolyte multilayers was studied using poly(diallyldimethylammonium chloride) (PDADMAC) and poly(4-styrenesulfonic acid-co-maleic acid, 1:1SS:MA) sodium salt (PSSMA 1:1) as the building blocks. The thickest multilayers turned out at pH 4. A homogeneous compression by a silicone rubber stamp increased significantly the water contact angle to a same value which was independent on the original assembly pH anymore. The multilayers assembled at pH 4 could be maximumly compressed to a ratio of 70% by a silicone rubber stamp with linear patterns, which was considerably larger than those assembled at other pHs (the compression ratio ~50%). The Ag nanoparticles were then synthesized inside the multilayers either flat compressed or not. The results showed that the compression reduced significantly the amount of Ag nanoparticles for the multilayers assembled at pH 2 and pH 4. The particle amount was also decreased significantly when the multilayers were assembled at higher pH, pH 6, for example, regardless of the compression. Substantial alteration of the multilayers in terms of the surface morphology, thickness and refractive index was found during the reduction of Ag(+) containing multilayers by NaBH(4) solution.  相似文献   

17.
Amphiphilic Janus dendrimers have attracted increasing attention due to their asymmetric structures and various functional properties compared to the conventional symmetric macromolecules. Herein, a novel ferrocenyl‐terminated amphiphilic Janus dendrimer containing nine hydrophilic triethylene glycol branches was synthesized by two synthetic routes, namely the typical chemo selective coupling method and the mixed modular approach. Chemical redox triggers, namely Fe2(SO4)3 as oxidant and ascorbic acid as reductant, could regulate the self‐assembly behavior of the Janus dendrimer in water through the redox‐switching between ferrocene and ferricinium cations, and the change of micelles formed were investigated and confirmed through scanning electron microscopy and dynamic light scattering. The cargo‐loading property of the micelles self‐assembled by the Janus dendrimer was further proved by the successful fabrication of Rhodamine B (RhB)‐loaded micelles, and the oxidation‐triggered release behavior of the encapsulated RhB could be mediated by changing the concentration of oxidants. This work provides an effective approach to prepare ferrocenyl‐terminated amphiphilic Janus dendrimers and the self‐assembled micelles might be used as a promising molecular carrier in areas such as drug delivery and catalysis.  相似文献   

18.
A new type of water soluble PEG core dendrimer having hydroxyl groups at the periphery was synthesized and used to prepare silver nanoparticles. The dendrimer and the dendrimer encapsulated nanoparticles (DENs) were characterized by spectroscopic techniques. The kinetics of catalytic activity of the prepared silver nanoparticle on the reduction of 4‐nitrophenol to 4‐aminophenol by NaBH4 as a reductant was studied using UV‐Visible spectrophotometer.  相似文献   

19.
pH-induced hysteretic gating of track-etched polycarbonate membranes (TEPC) has been achieved by depositing layer-by-layer assembled polyelectrolyte multilayers comprising poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS) at a high pH condition (pH > 9.0). Scanning electron microscopy and transmission electron microscopy showed that the average bilayer thickness of multilayers was greater within the cylindrical pores of track-etched polycarbonate membranes compared to the multilayers on planar substrates (e.g., Si wafers and the face of TEPC membranes). Swelling/deswelling properties of multilayers and gating properties of the multilayer-modified TEPC membranes were studied by measuring the flux of pH-adjusted deionized water. Large discontinuous changes in the transmembrane flux were observed, indicating that the multilayers within the cylindrical pores of TEPC membranes exhibit the discontinuous swelling/deswelling behavior observed previously for planar systems. The degree of swelling as estimated by simple models, however, showed that (PAH/PSS) multilayers in the confined geometry swelled to smaller extents compared to the same multilayers on planar substrates under the same conditions. Multilayer-modified membranes showed reversible gating properties as the pH condition of feed solution was alternated between pH 2.5 and 10.5. In situ atomic force microscopy (AFM) was used to visualize the closing of the pores as a function of time. The hysteretic gating property of the multilayer-modified TEPC membrane was utilized to achieve either a "closed" or "open" state at one pH condition depending on the pretreatment history, thereby enabling either the retention or passage of high-molecular weight polymers by varying the membrane pretreatment condition.  相似文献   

20.
Photo-cross-linkable polyelectrolyte multilayers were made from poly(allylamine) (PAH) and poly(acrylic acid) (PAA) modified with a photosensitive benzophenone. Nanoindentation, using atomic force microscopy (AFM) of these and unmodified PAH/PAA multilayers, was used to assess their mechanical properties in situ under an aqueous buffer. Under the conditions employed (and a 20 nm radius AFM tip), reliable nanoindentations that appeared to be decoupled from the properties of the silicon substrate were obtained for films greater than 150 nm in thickness. A strong difference in the apparent modulus was observed for films terminated with positive as compared to negative polyelectrolytes. Films terminated with PAA were more glassy, suggesting better charge matching of polyelectrolytes. Multilayers irradiated for up to 100 min showed a smooth, controlled increase in the modulus with little change in the water contact angle. The permeability to iodide ion, measured electrochemically, also decreased in a controlled fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号