首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Response surface methodology (RSM) with a Box–Behnken design (BBD) was used to optimize the extraction of bioactive compounds from Ephedra fragilis. The results suggested that extraction with 61.93% ethanol at 44.43 °C for 15.84 h was the best solution for this combination of variables. The crude ethanol extract (CEE) obtained under optimum extraction conditions was sequentially fractionated with solvents of increasing polarity. The content of total phenolic (TP) and total flavonoid (TF) as well as the antioxidant and antiglycation activities were measured. The phytochemical fingerprint profile of the fraction with the highest activity was characterized by using RP-HPLC. The ethyl acetate fraction (EAF) had the highest TP and TF contents and exhibited the most potent antioxidant and antiglycation activities. The Pearson correlation analysis results showed that TP and TF contents were highly significantly correlated with the antioxidant and antiglycation activities. Totally, six compounds were identified in the EAF of E. fragilis, including four phenolic acids and two flavonoids. Additionally, molecular docking analysis also showed the possible connection between identified bioactive compounds and their mechanisms of action. Our results suggest new evidence on the antioxidant and antiglycation activities of E. fragilis bioactive compounds that may be applied in the treatment and prevention of aging and glycation-associated complications.  相似文献   

2.
The present work is conducted to investigate the optimal extraction technology of polysaccharide from chestnut mushroom (Agrocybe aegerita) using a new method based on accelerated solvent extraction combined with response surface methodology (ASE-RSM). The conventional reflux extraction (CRE) method and ultrasonic-assisted extraction (UAE) method were also carried out. Additionally, the in vitro antioxidant activities, including ABTS and DPPH assay, were evaluated. The RSM method, based on a three level and three variable Box–Behnken design (BBD), was developed to obtain the optimal combination of extraction conditions. In brief, the polysaccharide was optimally extracted with water as extraction solvent, extraction temperature of 71 °C, extraction time of 6.5 min, number of cycles of 3, and extraction pressure of 10 MPa. The 3D response surface plot and the contour plot derived from the mathematical models were applied to determine the optimal conditions. Under the above conditions, the experimental value of polysaccharide yield was 19.77 ± 0.12%, which is in close agreement with the value (19.81%) predicted by the model. These findings demonstrate that ASE-RSM produce much higher polysaccharide and consumed environmentally friendly extraction and solvent systems, have less extraction discrimination and shorter time and provide scientific basis for industrialization of polysaccharide extraction. Moreover, it was proved that the polysaccharide had the potential ability to scavenge ABTS and DPPH.  相似文献   

3.
Mung bean seed coat (MBC) is a by-product of the mung bean processing industry. It contains a large number of phenolic compounds with therapeutic anti-inflammatory, anti-diabetic and antioxidant properties. This research aimed to investigate the optimum conditions for phenolic and flavonoid extraction from MBC by pressurized liquid extraction (PLE). Response surface methodology (RSM) was used to study the effects of temperature (80–160 °C), pressure (1200–1800 psi) and ethanol concentration (5–95%) on total phenolic content (TPC), total flavonoid content (TFC) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) scavenging activity (ABTS). Scale-up extraction was also performed. The optimum conditions for extraction were 160 °C, 1300 psi and 50% ethanol. Under optimum conditions, the TPC was 55.27 ± 1.14 mg gallic acid equivalent (GAE)/g MBC, TFC was 34.04 ± 0.72 mg catechin equivalent (CE)/g MBC and ABTS scavenging activity was 195.05 ± 2.29 mg trolox equivalent (TE)/g MBC. The TFC and ABTS scavenging activity of the extracts obtained at the pilot scale (10 L) was not significantly different from the laboratory scale, while TPC was significantly increased. The freeze-dried MBC extract contained vitexin and isovitexin 130.53 ± 17.89, 21.21 ± 3.22 mg/g extract, respectively. In conclusion, PLE was able to extract phenolics, flavonoids with ABTS scavenging activity from MBC with the prospect for future scale-up for food industry.  相似文献   

4.
Deep eutectic solvents (DESs) are considered as efficient and green solvents for the extraction of bioactive compounds from medicinal plants. In this work, a novel method of DES-based ultrasound-assisted extraction of bioactive compounds from Baphicacanthus cusia leaves (BCL) was established. Systematic screening and the morphology of the original and treated BCL were observed with scanning electron microscopy to determine the extraction efficiency of different solvents. The extraction conditions were optimized by Box–Behnken design (BBD) tests and the optimal extraction conditions were as follows: lactic acid/L-menthol ratio of 5: 2 (mol/mol), solid–liquid ratio of 80.0 mL/g and temperature of 60.5 °C. The extraction yields of tryptanthrin, indigo and indirubin reached 0.356, 1.744 and 0.562 mg/g, respectively. The results of a 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging activity test indicated the feasibility of DESs in the extraction of bioactive compounds. This study indicated that L-menthol/lactic acid was a green and efficient solvent for the extraction of bioactive compounds from BCL, and DES-based ultrasound-assisted extraction could be used as an effective application strategy for the extraction of bioactive compounds from medicinal plants.  相似文献   

5.
Sanghuangporus baumii, is a widely used medicinal fungus. The polyphenols extracted from this fungus exert antioxidant, anti-inflammatory, and hypoglycemic effects. In this study, polyphenols from the fruiting bodies of S. baumii were obtained using the deep eutectic solvent (DES) extraction method. The factors affecting the extraction yield were investigated at different conditions. Based on the results from single-factor experiments, response surface methodology was used to optimize the extraction conditions. The scavenging ability of the polyphenols on •OH, DPPH, and ABTS+ was determined. The results showed that the DES system composed of choline chloride and malic acid had the best extraction yield (6.37 mg/g). The optimal extraction parameters for response surface methodology were as follows: 42 min, 58 ℃, 1:34 solid–liquid (mg/mL), and water content of 39%. Under these conditions, the yield of polyphenols was the highest (12.58 mg/g). At 0.30 mg/mL, the scavenging ability of the polyphenols on •OH, DPPH, and ABTS+ was 95.71%, 91.08%, and 85.52%, respectively. Thus, the method using DES was more effective than the conventional method of extracting phenolic compounds from the fruiting bodies of S. baumii. Moreover, the extracted polyphenols exhibited potent antioxidant activity.  相似文献   

6.
The present study is a preparation of bioactive peptides from Cornus officinalis proteins by the compound enzymatic hydrolysis method. Response surface methodology (RSM) coupled with Box–Behnken design (BBD) is used to optimize the preparation process of Cornus officinalis peptides. The effects of independent variables, such as the amount of enzyme, pH value, time, extraction times and the ratio of material to liquid on the yield of peptides, are also investigated. The analysis results of the RSM model show that the optimum conditions for the extraction of Cornus officinalis peptides were a pH value of 6.76, temperature of 48.84 °C and the amount of enzyme of 0.19%. Under optimal conditions, the yield of peptides was 36.18 ± 0.26 %, which was close to the predicted yield by the RSM model. Additionally, the prepared Cornus officinalis peptides showed significant antioxidant activity; the scavenging rates of the peptides for DPPH and ·OH were 48.47% and 29.41%, respectively. The results of the cell proliferation assay revealed that the prepared Cornus officinalis peptides could promote embryo fibroblast cells proliferation and repair oxidative damage cells. These results have a practical application value in the design of novel functional food formulations by using Cornus officinalis.  相似文献   

7.
Coffee husks (Coffea arabica L.) are characterized by exhibiting secondary metabolites such as phenolic compounds, which can be used as raw material for obtaining bioactive compounds of interest in food. The objective of this study is to evaluate different methods for obtaining the raw material and extracting solutions of bioactive compounds from coffee husks. Water bath and ultrasound-assisted extraction methods were used, using water (100%) or ethanol (100%) or a mixture of both (1:1) as extracting solutions and the form of the raw material was in natura and dehydrated. The extracts were evaluated by their antioxidant potential using DPPH radicals, ABTS, and iron reduction (ferric reducing antioxidant power (FRAP)), and later total phenolic compounds, total flavonoids, and condensed tannins were quantified the phenolic majority compounds were identified. It was verified that the mixture of water and ethanol (1:1) showed better extraction capacity of the compounds with antioxidant activity and that both conventional (water bath) or unconventional (ultrasound) methods showed satisfactory results. Finally, a satisfactory amount of bioactive compounds was observed in evaluating the chemical composition (total phenolic compounds, total flavonoids, condensed tannins, as well as the analysis of the phenolic profile) of these extracts. Corroborating with the results of the antioxidant activities, the best extracting solution was generally the water and ethanol mixture (1:1) using a dehydrated husk and water bath as the best method, presenting higher levels of the bioactive compounds in question, with an emphasis on chlorogenic acid. Thus, it can be concluded that the use of coffee husk as raw material to obtain extracts of bioactive compounds is promising. Last, the conventional method (water bath) and the water and ethanol mixture (1:1) stood out among the methods and extracting solutions used for the dehydrated coffee husk.  相似文献   

8.
In the last few years, bioactive components or their extraction techniques are gaining special interest in scientific areas. In this framework, orange leaves were used for preparation of extracts with high content of biologically active compounds. To optimize the extraction process, three levels and three variables of Box–Behnken design with response surface methodology were applied. Investigated responses were the total phenolic content (TPC), 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, cupric ion reducing antioxidant capacity (CUPRAC), and ferric reducing antioxidant power (FRAP). Independent variables were methanol concentration (10–90%), temperature (20–60°C), and extraction time (60–180?min). Experimentally obtained results were fit into a second-order polynomial model with multiple regression. Analysis of variance was used to estimate model fitness and determine optimal conditions for processing. Estimated optimal conditions were 90% methanolic solution, 60°C and 180?min using these parameters; the predicted values of investigated responses were 43.19?mg GAE/g (GAE: gallic acid equivalents), 43.04?mg TE/g (TE: trolox equivalents), 139.34 and 93.76?mg TE/g for TPC, DPPH, CUPRAC, and FRAP, respectively. The obtained optimal conditions could be considered as an alternative strategy for developing novel functional products.  相似文献   

9.
The aim of this research was to provide crucial and useful data about the selection of the optimization criteria of supercritical carbon dioxide extraction of alfalfa at a quarter-technical plant. The correlation between more general output, including total phenolics and flavonoids content, and a more specified composition of polar constituents was extensively studied. In all alfalfa extracts, polar bioactive constituents were analyzed by both spectrometric (general output) and chromatographic (detailed output) analyses. Eight specific phenolic acids and nine flavonoids were determined. The most dominant were salicylic acid (221.41 µg g−1), ferulic acid (119.73 µg g−1), quercetin (2.23 µg g−1), and apigenin (2.60 µg g−1). For all seventeen analyzed compounds, response surface methodology and analysis of variance were used to provide the optimal conditions of supercritical fluid extraction for each individual constituent. The obtained data have shown that eight of those compounds have a similar range of optimal process parameters, being significantly analogous for optimization based on total flavonoid content.  相似文献   

10.
Millettia pulchra is traditionally used for treating diseases, including joint pain, fever, anemia, and allergies. It is also a potential resource of natural flavonoid derivatives, which represents major constituents of this plant. This study aimed to isolate the major compounds from M. pulchra radix, develop and validate the HPLC-PDA method to determine their contents, and optimize its extraction. Four major flavonoid derivatives (karanjin, lanceolatin B, 2”,2”-dimethylpyrano-[5″,6″:7,8]-flavone, and pongamol) were isolated using silica gel column chromatography, crystallization techniques in large amounts with high purities (>95%). A simple, accurate high-performance liquid chromatography–photodiode array (HPLC–PDA) detection method has been developed and validated with significantly statistical impacts according to International Conference on Harmonization (ICH) guidelines. The Response Surface Methodology (RSM), Artificial Neural Network (ANN) models were employed to predictive performance and optimization of the extraction process. The optimized conditions for the extraction of major flavonoids were: extraction time (twice), solvent/material ratio (9.5), and ethanol concentration (72.5%). Our research suggests an effective method, which will be helpful for quality control in the pharmaceutical development of this species.  相似文献   

11.
为优化对黄芪多糖提取工艺.根据单因素实验结果,选取实验因素与水平,根据Box - Benhnken的试验设计原理,采用三因素三水平的响应面分析法,以获得多元二次线性回归方程,以多糖得率为响应值的响应面和等高线.结果表明,提取黄芪多糖最佳工艺条件:料水比1:13,提取温度94 ℃,提取时间64 min.在此条件下,黄芪多...  相似文献   

12.
Abstract

The recovery of antioxidants from basil (Ocimum basilicum L.) was modeled with the aid of response surface methodology (RSM) using microwave-assisted extraction (MAE). Face-centered central design (FCCD) was employed to optimize the MAE operational parameters including the extraction time (1 to 7?min), extraction temperature (30 to 120?°C), solid-to-solvent ratio (0.1 to 0.4), and solvent concentration (20 to 80% ethanol, v/v), and to obtain the best possible combinations of these parameters for a high antioxidant yield from basil. The total antioxidant capacity (TAC) was expressed in trolox (TR) equivalents per gram of dried sample (DS). Three of the operational parameters (temperature, extraction time and solvent concentration) were shown to have significant effect on the extraction efficiency of antioxidants in basil extracts (p?<?0.05). The solvent concentration was shown to be the most significant factor on antioxidant yield obtained by MAE. There was a close relationship between experimental and predicted values using the proposed method. This optimized MAE method shows an application potential for the efficient extraction of antioxidants from basil in the food and pharmaceutical industries.  相似文献   

13.
Microalgae contain an abundance of valuable bioactive compounds such as chlorophylls, carotenoids, and phenolics and, consequently, present great commercial interest. The aim of this work is the study and optimization of recovering the aforementioned components from the microalgae species Chlorella vulgaris through conventional extraction in a laboratory-scale apparatus using a “green” mixture of ethanol/water 90/10 v/v. The effect of three operational conditions—namely, temperature (30–60 °C), duration (6–24 h) and solvent-to-biomass ratio (20–90 mLsolv/gbiom), was examined regarding the extracts’ yield (gravimetrically), antioxidant activity, phenolic, chlorophyll, and carotenoid contents (spectrophotometric assays), as well as concentration in key carotenoids, i.e., astaxanthin, lutein, and β-carotene (reversed-phase–high-performance liquid chromatography (RP–HPLC)). For this purpose, a face-centered central composite design (FC-CCD) was employed. Data analysis resulted in the optimal extraction conditions of 30 °C, for 24 h with 37 mLsolv/gbiom and validation of the predicted models led to 15.39% w/w yield, 52.58 mgextr/mgDPPH (IC50) antioxidant activity, total phenolic, chlorophyll, and carotenoid content of 18.23, 53.47 and 9.92 mg/gextr, respectively, and the total sum of key carotenoids equal to 4.12 mg/gextr. The experimental data and predicted results were considered comparable, and consequently, the corresponding regression models were sufficiently reliable for prediction.  相似文献   

14.
Natural deep eutectic solvents (NADESs) coupled with microwave-assisted extraction (MAE) were applied to extract total flavonoid compounds from spent sweet potato (Ipomoea batatas L.) leaves. In this study, ten different NADESs were successfully synthesized for the MAE. Based on single-factor experiments, the response surface methodology (RSM) was applied, and the microwave power, extraction temperature, extraction time, and solid–liquid ratio were further evaluated in order to optimize the yields of total flavonoid compounds. Besides, the extracts were recovered by macroporous resin for the biological activity detection of flavonoid compounds. As a result, NADES-2, synthesized by choline chloride and malic acid (molar ratio 1:2), exhibited the highest extraction yield. After that, the NADES-2-based MAE process was optimized and the optimal conditions were as follows: microwave power of 470 W, extraction temperature of 54 °C, extraction time of 21 min, and solid–liquid ratio of 70 mg/mL. The extraction yield (40.21 ± 0.23 mg rutin equivalents/g sweet potato leaves) of the model validation experiment was demonstrated to be in accordance with the predicted value (40.49 mg rutin equivalents/g sweet potato leaves). In addition, flavonoid compounds were efficiently recovered from NADES-extracts with a high recovery yield (>85%) using AB-8 macroporous resin. The bioactivity experiments in vitro confirmed that total flavonoid compounds had good DPPH and O2· radical-scavenging activity, as well as inhibitory effects on E. coli, S. aureus, E. carotovora, and B. subtilis. In conclusion, this study provides a green and efficient method to extract flavonoid compounds from spent sweet potato leaves, providing technical support for the development and utilization of sweet potato leaves’ waste.  相似文献   

15.
In the present work, the extraction process of total flavonoids (TFs) from X. sorbifolia flowers by ultrasound-assisted extraction was optimized under the response surface methodology (RSM) on the basis of single-factor experiments. The optimal extraction conditions were as follows: ethanol concentration of 80%, solid–liquid ratio of 1:37 (g/mL), temperature of 84 °C, and extraction time of 1 h. Under the optimized conditions, the extraction yield of the TFs was 3.956 ± 0.04%. The radical scavenging capacities of TFs against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) were much greater than that of rutin. The results of antibacterial experiments indicated that the TFs displayed strong inhibitory activities on E. coli, S. aureus and Bacillus subtilis. Therefore, X. sorbifolia flowers can be used as a novel source of natural flavonoids, and the TFs have potential applications as natural antioxidants or antibacterial agents in the food and pharmaceutical industries.  相似文献   

16.
In the present study, subcritical water extraction (SWE) assisted with deep eutectic solvent (DES) is used to extract Lentinus edodes polysaccharides (LEP). In addition, the antioxidant activity of the polysaccharide samples was also investigated. Based on a single factor test and response surface test, the optimal extraction factors were a liquid–solid solvent of 40:1 mL/g, extraction temperature of 147.23 °C, water content of 39.76% and extraction time of 17.58 min. Under these extraction conditions, the yield of LEP was 6.26 ± 0.08%. Compared with the SWE and hot water extraction (HWE), it improved by 19.24% and 17.01%, respectively. In addition, the results of monosaccharide composition, molecular weight, FT-IR, UV and SEM confirmed that the extracts had the features of polysaccharides. Interestingly, the polysaccharides obtained with the SWE assisted with the DES procedure showed a higher DPPH scavenging activity, hydroxyl radical scavenging activity and hydrogen peroxide scavenging activity, which indicated that the polysaccharides with this method had a stronger antioxidant activity. These findings demonstrated that the SWE-assisted DES is a strong method to obtain polysaccharides from Lentinus edodes for food, biopharmaceutical and other industrial production.  相似文献   

17.
Garlic (Allium sativum) is the second most important Allium crop that has been used as a vegetable and condiment from ancient times due to its characteristic flavor and taste. Although garlic is a sterile plant that reproduces vegetatively through cloves, garlic shows high biodiversity, as well as phenotypic plasticity and environmental adaptation capacity. To determine the possible mechanism underlying this phenomenon and to provide new genetic materials for the development of a novel garlic cultivar with useful agronomic traits, the metabolic profiles in the leaf tissue of 30 garlic accessions collected from different geographical regions, with a special focus on the Asian region, were investigated using LC/MS. In addition, the total saponin and fructan contents in the roots and cloves of the investigated garlic accessions were also evaluated. Total saponin and fructan contents did not separate the garlic accessions based on their geographical origin, implying that saponin and fructan contents were clone-specific and agroclimatic changes have affected the quantitative and qualitative levels of saponins in garlic over a long history of cultivation. Principal component analysis (PCA) and dendrogram clustering of the LC/MS-based metabolite profiling showed two major clusters. Specifically, many Japanese and Central Asia accessions were grouped in cluster I and showed high accumulations of flavonol glucosides, alliin, and methiin. On the other hand, garlic accessions grouped in cluster II exhibited a high accumulation of anthocyanin glucosides and amino acids. Although most of the accessions were not separated based on country of origin, the Central Asia accessions were clustered in one group, implying that these accessions exhibited distinct metabolic profiles. The present study provides useful information that can be used for germplasm selection and the development of new garlic varieties with beneficial biotic and abiotic stress-adaptive traits.  相似文献   

18.
Curcuma root (Curcuma longa L.) is a very important plant in gastronomy and medicine for its unique antiseptic, anti-inflammatory, antimicrobial and antioxidant properties. Conventional methods for the extraction of curcuma oil require long extraction times and high temperatures that can degrade the active substances. Therefore, the objectives of the present study were: (i) first, to optimize the extraction yield of curcuma oil by applying a Box-Behnken experimental design using surface response methodology to the microwave-assisted extraction (MAE) technique (the independent variables studied were reaction time (10–30 min), microwave power (150–200 W) and curcuma powder/ethanol ratio (1:5–1:20; w/v); and, (ii) second, to assess the total phenolic content (TPC) and their antioxidant activity of the oil (at the optimum conditions point) and compare with the conventional Soxhlet technique. The optimum conditions for the MAE were found to be 29.99 min, 160 W and 1:20 w/v to obtain an optimum yield of 10.32%. Interestingly, the oil extracted by microwave-assisted extraction showed higher TPC and better antioxidant properties than the oil extracted with conventional Soxhlet technique. Thus, it was demonstrated that the method applied for extraction influences the final properties of the extracted Curcuma longa L. oil.  相似文献   

19.
Medicago lupulina is an ancient edible plant from the Fabaceae family. In this work, two eco-friendly methods for extraction of bioactive phenolics from M. lupulina were developed using mixtures of water with two non-toxic, skin- and environmentally-friendly polyol solvents: glycerol and polypropylene glycol. Ultrasound-assisted extractions were optimized using a Box–Behnken design. The independent variables were the concentration of organic solvent in water (X1), extraction temperature (X2) and time (X3), while the response was phenolic content. The optimum conditions for extraction of polyphenols were (X1, X2, X3): (45%, 70 °C, 60 min) and (10%, 80 °C, 60 min) for glycerol and polypropylene glycol extraction, respectively. The extracts prepared at optimum conditions were rich in phenolic compounds, mainly derivatives of apigenin, kaempferol, luteolin, quercetin, caffeic and ferulic acid, as well as coumestrol. Their cosmeceutical and antidiabetic activity was tested. Both extracts demonstrated notable antioxidant, anti-lipoxygenase and anti-α-amylase activity. In addition to those activities, the glycerol extract efficiently inhibited protein coagulation, elastase and α-glucosidase activity. Glycerol present in the extract displayed enzyme-inhibiting activity in several assays and supported the action of the bioactive constituents. Thus, the optimized glycerol extract is a desirable candidate for direct incorporation in antidiabetic food supplements and cosmeceutical products.  相似文献   

20.
Rapeseed (Brassica napus L.) is a herbaceous annual plant of the Cruciferous family, the Cabbage genus. This oilseed crop is widely used in many areas of industry and agriculture. High-quality oil obtained from rapeseed can be found in many industrial food products. To date, extracts with a high content of biologically active substances are obtained from rapeseed using modern extraction methods. Brassica napus L. seeds contain polyunsaturated and monounsaturated fatty acids, carotenoids, phytosterols, flavonoids, vitamins, glucosinolates and microelements. The data in this review show that rapeseed biocompounds have therapeutic effects in the treatment of various types of diseases. Some studies indicate that rapeseed can be used as an anti-inflammatory, antioxidant, antiviral, hypoglycemic and anticancer agent. In the pharmaceutical industry, using rapeseed as an active ingredient may help to develop new forms drugs with wide range of therapeutic effects. This review focuses on aspects of the extraction of biocompounds from rapeseed and the study of its pharmacological properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号