首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The by-product of the previous transesterification, glycerol was utilised as an acid catalyst precursor for biodiesel production. The crude glycerol was treated through the sulfonation method with sulfuric acid and chlorosulfonic acid in a reflux batch reactor giving solid glycerol-SO3H and glycerol-ClSO3H, respectively. The synthesised acidic glycerol catalysts were characterised by various analytical techniques such as thermalgravimetric analyser (TGA), infrared spectroscopy, surface properties adsorption-desorption by nitrogen gas, ammonia-temperature programmed desorption (NH3-TPD), X-ray diffraction spectroscopy (XRD), elemental composition analysis by energy dispersive spectrometer (EDX) and surface micrographic morphologies by field emission electron microscope (FESEM). Both glycerol-SO3H and glycerol-ClSO3H samples exhibited mesoporous structures with a low surface area of 8.85 mm2/g and 4.71 mm2/g, respectively, supported by the microscopic image of blockage pores. However, the acidity strength for both catalysts was recorded at 3.43 mmol/g and 3.96 mmol/g, which is sufficient for catalysing PFAD biodiesel at the highest yield. The catalytic esterification was optimised at 96.7% and 98.2% with 3 wt.% of catalyst loading, 18:1 of methanol-PFAD molar ratio, 120 °C, and 4 h of reaction. Catalyst reusability was sustained up to 3 reaction cycles due to catalyst deactivation, and the insight investigation of spent catalysts was also performed.  相似文献   

2.
The experimental parameters for biodiesel production from para rubber seed oil and methanol using a SO3H-MCM-41 catalyst were optimized statistically. The SO3H-MCM-41 catalyst was synthesized by co-condensation in the presence of tetraethyl orthosilicate, 3-mercaptopropyl (methyl) dimethoxysilane (MPMDS) and cetyl-trimethylammonium bromide. In the last step, the solid catalyst (SH-MCM41) was oxidized by H2O2 to SO3H-MCM-41. The acid capacity of the obtained SO3H-MCM-41 catalyst was quantified by back titration with 0.1 M sodium hydroxide. The physical and chemical properties of the SO3H-MCM-41 were characterized by nitrogen adsorption/desorption, X-ray diffractometry, Fourier transform infrared spectroscopy and thermogravimetric analysis. The effect of varying the catalyst loading (wt.%), reaction time (h) and temperature (°C) and molar composition of MPMDS on the biodiesel yield were investigated using a 2k factorial design. The optimal conditions to maximize the biodiesel yield, obtained from the response surface analysis using a Box–Behnken design, was a 14.5 wt.% catalyst loading, and a reaction time and temperature of 48 h and 129.6 °C. Under these conditions a fatty acid methyl ester (biodiesel) yield of 84% was predicted, and an 83.10 ± 0.39% yield experimentally obtained.  相似文献   

3.
In this study, biodiesel was produced from marula (Sclerocarya birrea) oil using impregnated perlite with potassium hydroxide (KOH) as a heterogeneous catalyst. The effect of experimental variables such as temperature (°C), reaction time (h), methanol to oil ratio (mass %), and catalyst to oil ratio (mass %) on the transesterification process were investigated. Using a central composite design (CCD), a mathematical model was developed to correlate the experimental variables with the percentage yield of biodiesel. The model showed that optimum conditions for biodiesel production were as follows: catalyst to oil ratio of 4.7 mass %, temperature of 70.4°C, methanol to oil ratio of 29.9 mass %, and reaction time of 3.6 h. The yield of 91.4 mass % of biodiesel was obtained. It was also possible to recycle and reuse the modified perlite up to three times without any significant change in its catalytic activity. The X-ray diffraction (XRD) and the Brunauer-Emmett-Teller (BET) surface area showed no modifications in the perlite structure. The results show that the important fuel properties of marula biodiesel meet the American Society for Testing and Materials (ASTM) biodiesel standard properties.  相似文献   

4.
以草酸盐为前驱体采用两步法制备了一种以CaO-MgO作为活性组分,以CoFe_2O_4作为磁核的磁性固体碱催化剂,并用于大豆油与甲醇的酯交换反应合成生物柴油。对制备的磁性固体碱催化剂进行了磁滞回线、X-射线衍射(XRD)、CO_2-TPD及透射电镜(TEM)表征。考察了不同核壳物质的量比、焙烧温度、反应温度、反应时间、醇油物质的量比以及催化剂用量等因素对大豆油转化为生物柴油产率的影响。结果表明,采用核壳物质的量比为1∶6、焙烧温度为700℃所制备的CaO-MgO@CoFe_2O_4催化剂,当醇油物质的量比为12、催化剂用量为大豆油质量的1.0%时,在65℃下反应时间3 h,生物柴油收率高达97.1%。该催化剂具有较好的重复利用性能,重复利用四次后生物柴油的收率仍可达90%。  相似文献   

5.
CaO–Al2O3/ZrO2 mixed oxide catalyst was prepared using free-solvent method. The catalyst was characterized using X-ray diffraction, BET surface area, acidity index (obtained by titration method), and scanning electron microscopy (SEM). With calcium aluminate and calcium zirconate been successfully formed, the mix exhibited small crystal size, high acidity, and large surface area, pore size, and pore volume, making it a catalyst of choice for biodiesel production. The activity of catalyst was evaluated in the course of esterification of oleic acid as well as transesterification of waste cooking oil (WCO) into biodiesel. Based on a four-variable central composite design (CCD), response surface methodology (RSM) was used to optimize effective variables on oleic acid conversion. The optimum yield of 94.68% was obtained at the following set of optimum conditions: reaction temperature of 120 °C, methanol/oleic acid molar ratio of 15.64, catalyst concentration of 2.94 wt%, and reaction time of 4 h; the result was in excellent agreement with the predicted values. Furthermore, under the optimum conditions, the catalyst succeeded to convert 93.48% of WCO into biodiesel.  相似文献   

6.
本文研究了不同石墨烯基材料用作转酯化反应制备生物柴油催化剂的性能.将磺酸基或磷酸盐基嫁接到热还原的氧化石墨烯表面,制备了固体酸石墨烯基样品.并采用扫描电镜、X射线衍射、热重分析、X射线光电子能谱、N_2吸附-脱附法、电位滴定法、元素分析以及红外光谱法对所制样品进行了全面表征.将所制样品用于130℃带压力的条件下菜籽油与甲醇转酯化反应中,并将其催化活性与商用的多相酸催化剂Amberlyst-15的进行了比较.结果表明,所有改进的样品在转酯化反应中均表现出催化活性,但各样品上生物柴油产率差别较大.其中以苯二氮磺酸基功能化的热还原氧化石墨烯样品上脂肪酸甲酯产率最高,反应6 h后达70%,也明显高于商用催化剂Amberlyst-15.该样品也表现出良好的重复使用性能.  相似文献   

7.
In this study, biodiesel has been successfully produced by transesterification using non-catalytic supercritical methanol and methyl acetate. The variables studied, such as reaction time, reaction temperature and molar ratio of methanol or methyl acetate to oil, were optimised to obtain the optimum yield of fatty acid methyl ester (FAME). Subsequently, the results for both reactions were analysed and compared via Response Surface Methodology (RSM) analysis. The mathematical models for both reactions were found to be adequate to predict the optimum yield of biodiesel. The results from the optimisation studies showed that a yield of 89.4 % was achieved for the reaction with supercritical methanol within the reaction time of 27 min, reaction temperature of 358°C, and methanol-to-oil molar ratio of 44. For the reaction in the presence of supercritical methyl acetate, the optimum conditions were found to be: reaction time of 32 min, reaction temperature of 400°C, and methyl acetate-to-oil molar ratio of 50 to achieve 71.9 % biodiesel yield. The differences in the behaviour of methanol and methyl acetate in the transesterification reaction are largely due to the difference in reactivity and mutual solubility of Jatropha curcas oil and methanol/methyl acetate.  相似文献   

8.
基于氯化镁饱和溶液反应体系中,对采用固定化脂肪酶Lipozyme TL IM催化光皮树油脂转化为生物柴油的工艺进行了研究。考察了固定化脂肪酶Lipozyme TL IM催化光皮树油转酯化的工艺中甲醇的用量、固定化脂肪酶的添加量、摇床的转速和反应时间对生物柴油产率的影响。实验结果表明,采用氯化镁饱和溶液反应体系,在醇油摩尔比为3∶1,固定化酶Lipozyme TL IM用量为光皮树油质量的20%,摇床转速为150 r/min,反应8 h时,生物柴油产率最高,达到86.5%。与传统的三步甲醇醇解或者有机溶剂反应体系比较,采用的氯化镁饱和溶液体系的酶稳定性更好,反应效率更高,有效地解决了酶在甲醇中失活的问题,生产成本低,可成为生产生物柴油的新工艺。  相似文献   

9.
Biodiesel is considered a sustainable alternative to petro-diesel owing to several favorable characteristics. However, higher production costs, primarily due to the use of costly edible oils as raw materials, are a chief impediment to its pecuniary feasibility. Exploring non-edible oils as raw material for biodiesel is an attractive strategy that would address the economic constraints associated with biodiesel production. This research aims to optimize the reaction conditions for the production of biodiesel through an alkali-catalyzed transesterification of Tamarindus indica seed oil. The Taguchi method was applied to optimize performance parameters such as alcohol-to-oil molar ratio, catalyst amount, and reaction time. The fatty acid content of both oil and biodiesel was determined using gas chromatography. The optimized conditions of alcohol-to-oil molar ratio (6:1), catalyst (1.5% w/w), and reaction time 1 h afforded biodiesel with 93.5% yield. The most considerable contribution came from the molar ratio of alcohol to oil (75.9%) followed by the amount of catalyst (20.7%). In another case, alcohol to oil molar ratio (9:1), catalyst (1.5% w/w) and reaction time 1.5 h afforded biodiesel 82.5% yield. The fuel properties of Tamarindus indica methyl esters produced under ideal conditions were within ASTM D6751 biodiesel specified limits. Findings of the study indicate that Tamarindus indica may be chosen as a prospective and viable option for large-scale production of biodiesel, making it a substitute for petro-diesel.  相似文献   

10.
Keggin型钨锗酸联咪唑盐催化合成环己酮乙二醇缩酮   总被引:1,自引:1,他引:0  
杨柳  卢明达  张澜萃  张柏  孙航  朱再明 《应用化学》2014,31(11):1310-1316
设计合成了Keggin型钨锗酸联咪唑盐(H4biim)[H2GeW12O40]·18H2O(1b,H2biim=2,2′-联咪唑), 并将其用于催化合成环己酮乙二醇缩酮反应。 通过X射线单晶衍射、红外光谱(FT-IR)、紫外光谱(UV)、热重-差热(TG-DTA)、粉末衍射(XRD)等技术手段对催化剂1b进行了表征。 较系统地研究了反应物料比、催化剂用量、反应时间等因素对催化反应的影响。 在n(环己酮)∶n(乙二醇)=1∶1.4,n(1b,以W计)∶n(环己酮)=1∶260,反应2 h的优化反应条件下,目标化合物产率达90%,催化剂可循环使用,表现出良好的催化稳定性。  相似文献   

11.
Reusability of two heterogeneous catalysts in ultrasound (US) assisted biodiesel production was investigated in comparison to each other. An ultrasound (US) generator (200 W, 20 kHz) equipped with a horn type probe (19 mm) was used. Regeneration experiments were planned according to second order central composite design (CCD) method. After the eighth use of the catalysts, biodiesel yield decreased from 99.1% to 90.4% for calcined calcite (CaO) and from 98.8% to 89.8% for calcined dolomite (CaO.MgO). Furthermore, regeneration of spent catalysts by calcination was investigated; optimum temperature and time were found as 750 °C and 90 min, lower than fresh catalyst preparation conditions. The regenerated catalysts were reused in a second process cycle; biodiesel yield was calculated as 97.2% for CaO and 96.5% for CaO.MgO. Finally, the process showed that calcination is an energetically favorable regeneration process of spent catalysts.  相似文献   

12.
采用溶胶-凝胶法合成Ca O@Si O_2固体碱催化剂,以聚苯乙烯有机聚合物为硬模板剂和以P123为软模板剂对Ca O的微观形貌进行调控。并将其应用于大豆油与甲醇的酯交换制备生物柴油的反应体系中。通过对Ca O@Si O_2纳米固体碱催化剂进行X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电镜(TEM)、CO_2-TPD及N_2的吸附-脱附(BET)表征发现,不仅制备得到了形貌归整的纳米固体颗粒,而且得到了Ca O包裹在Si O_2表面的核壳结构。进一步考察了不同的硅钙质量比、反应温度、催化剂的用量以及油醇物质的量比对生物柴油收率的影响,生物柴油的收率最高可以达到95.6%。  相似文献   

13.
A new heterogeneous K2CO3 supported by a layered double hydroxide (LDH), Mg–Al hydrotalcite, was prepared and used as a catalyst for the biodiesel preparation by a tri-component coupling transesterification of methanol, vegetable oil, and methyl acetate. K2CO3/Mg-Al exhibits high catalytic activities, and biodiesel yield can reach 99.48% within 20 min under 60°C, with 6 wt.% of K2CO3/Mg-Al, 1:1:12 molar ratio of rapeseed oil, methyl acetate, and methanol. Fourier-transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, nitrogen physical adsorption, thermogravimetry analysis, and CO2-chemical adsorption were used to assess the physical properties of the prepared K2CO3/Mg-Al. Using the tri-component coupling transesterification, 12.2% cost reduce can be get by reducing the cost from 8458 to 7424 ¥/t compared with di-component transesterification containing oil and methanol as resource.  相似文献   

14.
Calcined waste starfish was used as a base catalyst for the production of biodiesel from soybean oil for the first time. A batch reactor was used for the transesterification reaction. The thermal characteristics and crystal structures of the waste starfish were investigated by thermo-gravimetric analysis and X-ray diffraction. The biodiesel yield was determined by measuring the content of fatty acid methyl esters (FAME). The calcination temperature appeared to be a very important parameter affecting the catalytic activity. The starfish-derived catalyst calcined at 750 °C or higher exhibited high activity for the transesterification reaction. The FAME content increased with increasing catalyst dose and methanol-over-oil ratio.  相似文献   

15.
Zinc aluminate and cerium-doped zinc aluminate nanoparticles are synthesised by co-precipitation method. Ammonium hydroxide is used as a precipitating agent. The synthesised compounds are characterised by powder X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FT-IR), Ultraviolet diffuse reflectance spectroscopy (UV-DRS), Thermogravimetric analysis (TGA), Scanning electron microscopy (SEM) and Surface area measurements. The photocatalytic activity of zinc aluminate and cerium doped zinc aluminate nanoparticles are studied under the UV light and visible light taking methylene blue as a model pollutant. The amount of catalyst, concentration of dye solution and time are optimised under UV-light. Degradation of methylene blue under the UV-light is found to be 99% in 20 min with 10 mg of cerium doped catalyst. Compared to visible light degradation, the degradation of dye under UV-light is higher. Cerium doping in zinc aluminate (ZnAl2O4:Ce3+) increased the photocatalytic activity of zinc aluminate.  相似文献   

16.
Mo-KIT-6 catalysts precursors obtained by direct hydrothermal synthesis using different Si/Mo molar ratios (10, 20, 30) were evaluated in the production of biodiesel from the transesterification of soybean oil with methanol. A 22 + 3PtCt factorial design was used to evaluate the influence of alcohol/oil and Si/Mo ratios on biodiesel yield. ANOVA statistical analysis showed that Si/Mo ratio was the most significant variable. The factorial design showed that the optimal conditions for maximizing the biodiesel yield are: using the 10_Mo-KIT-6 catalyst, and an alcohol/oil ratio of 20/1 at 150 °C for 3 h. However, using the 20_Mo-KIT-6 catalyst with an alcohol/oil ratio of 15/1 the biodiesel yield is close to the maximum, having the advantage of using a lower amount of methanol, which means that the separation of non-reacted alcohol will consume less energy.  相似文献   

17.
多频超声反应槽连续强化酸化油酯交换制备生物柴油研究   总被引:1,自引:0,他引:1  
以平均酸值高达33.07 mgKOH/g不可食用的廉价酸化油为原料,利用自行设计的多频超声溢流槽连续强化酯交换反应生物柴油生产装置,先后经预酯化、酯交换两步反应,高效、低耗的制备生物柴油。主要考察了室温下物料流量(停留时间)、超声功率、超声频率及组合、KOH用量、醇油物质的量比对酯交换反应的影响及单位产品能耗。结果表明,多频组合超声辐射比单频更有利于生物柴油的制备;预酯化后的油料在流量为25 L/h(物料停留时间为54 min),催化剂(KOH)用量为1.2%(质量分数),醇油物质的量比为6∶1和各反应槽功率为200 W的条件下,甲酯产率达96.83%。50 L废弃酸化油能制得符合国标GB19147—2009的生物柴油48L,整个生物柴油制备过程总耗时和总耗电量仅为8.667 h、5.42 kWh。  相似文献   

18.
用共沉淀法制备了纳米Ru-Zn催化剂,考察了阿拉伯树胶修饰对苯选择加氢制环己烯催化剂性能的影响,并用X射线衍射(XRD)、透射电镜(TEM)、N2-物理吸附、X射线光电能谱(XPS)和X射线荧光光谱(XRF)等手段对催化剂进行了表征。结果表明,阿拉伯树胶的用量可以调变Ru-Zn催化剂的粒径。最高环己烯收率随粒径的增大呈火山型变化趋势。当阿拉伯树胶与RuCl3·xH2O的质量比为0.033时,Ru-Zn催化剂的最佳粒径为4.0 nm,最高环己烯收率达59.6%。且该催化剂具有良好的重复使用性能。  相似文献   

19.
用共沉淀法制备了纳米Ru-Zn催化剂,考察了阿拉伯树胶修饰对苯选择加氢制环己烯催化剂性能的影响,并用X射线衍射(XRD)、透射电镜(TEM)、N_2-物理吸附、X射线光电能谱(XPS)和X射线荧光光谱(XRF)等手段对催化剂进行了表征。结果表明,阿拉伯树胶的用量可以调变Ru-Zn催化剂的粒径。最高环己烯收率随粒径的增大呈火山型变化趋势。当阿拉伯树胶与RuCl_3·x H_2O的质量比为0.033时,Ru-Zn催化剂的最佳粒径为4.0 nm,最高环己烯收率达59.6%。且该催化剂具有良好的重复使用性能。  相似文献   

20.
Heterogeneous catalysts, named SPS (sodium potassium silicates), were synthesized with an alternative silica (MPI silica) obtained from beach sand. In this work, the MPI was modified with NaOH and KOH producing silicate-based catalyst for biodiesel synthesis from waste cooking oil (WCO). The obtained catalyst was characterized by XRD, CO2-TPD, the Hammett basicity test, XRF, FESEM, EDX, FTIR and TG/DTG. The results confirmed the presence of K2O/Na2O oxides and their silicates, the main active sites responsible for the catalytic action. CO2-TPD and the Hammett basicity data suggested the presence of weak, medium and strong basic sites. Biodiesel yield was about 92% and the SPS catalyst was reused for five cycles. The biodiesel conversion by NMR 1H was about 93.89%. The DTG deconvolution revealed the decomposition of four typical biodiesel compounds (R2 = 0.9987). The method applied for the WCO biodiesel production using SPS catalyst represents an environmentally friendly process, based on low-cost material and reuse of waste biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号