首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pulmonary perfusion is an important parameter in the evaluation of lung diseases such as pulmonary embolism. A noninvasive MR perfusion imaging technique of the lung is presented in which magnetically labeled blood water is used as an endogenous, freely diffusible tracer. The perfusion imaging technique is an arterial spin tagging method called Flow sensitive Alternating Inversion Recovery with an Extra Radiofrequency pulse (FAIRER). Seven healthy human volunteers were studied. High-resolution perfusion-weighted images with negligible artifacts were acquired within a single breathhold. Different patterns of signal enhancement were observed between the pulmonary vessels and parenchyma, which persists up to TI = 1400 ms. The T1s of blood and lung parenchyma were determined to be 1.46s and 1.35 s, respectively.  相似文献   

2.
In vivo pelvic imaging of 39 women and in vitro relaxation time measurements of four uterine specimens were performed using an ultra low field (0.02 T) MRI unit. Average T1 times measured in vitro at 37 degrees C for the myometrium and endometrium were 206 ms (SD 47 ms) and 389 ms (SD 21 ms), respectively. Corresponding T2 times were 95 ms (SD 20 ms) and 167 ms (SD 13 ms). The proton relaxation of almost all myometrial specimens proved to be biexponential, but of all endometrial specimens was monoexponential. Contrast measurements between endometrium versus myometrium and myometrium versus the junctional zone were performed after imaging 18 volunteer women using different pulse sequence parameters. Normal uterine structures were optimally demonstrated by SE 700/70. Relatively short repetition times could be used, because spin-lattice relaxation times were short at the low magnetic field. Consequently, the short repetition times allowed averaging of four excitations to create adequate images within an acceptable scanning time. In addition to T2-weighted images a T1-weighted inversion recovery sequence with a short inversion time of 50 ms (IR 1000/50/40) adequately differentiated the three uterine zones. Although pathologic lesions of the uterus including leiomyomas, anomalies and carcinomas were well demonstrated, especially with the T2-weighted spin echo pulse sequence, further investigations are needed to evaluate the optimal technique for ultra low field MR imaging of uterine tumors.  相似文献   

3.
Assessment of hemodynamics in arteriovenous malformations (AVMs) is important for estimating the risk of bleeding as well as planning and monitoring therapy. In tissues with perfusion values significantly higher than cerebral cortex, continuous arterial spin labeling (CASL) permits both adequate representation and quantification of perfusion. Thirteen patients who had cerebral AVMs were examined with two magnetic resonance imaging (MRI) techniques: perfusion imaging using a CASL technique with two delay times, 800 and 1200 ms, and T2-weighted dynamic contrast-enhanced MRI (T2-DCE-MRI). The signal-to-noise ratio obtained in our study with the CASL technique at 3 T was sufficient to estimate perfusion in gray matter. Both nidal and venous perfusion turned out larger by factors of 1.71±2.01 and 2.48±1.51 in comparison to T2-DCE-MRI when using CASL at delay times of 800 and 1200 ms, respectively. Moreover, the venous and nidal perfusion values of the AVMs measured at T2-DCE-MRI did not correlate with those observed at CASL. Evaluation of average perfusion values yielded significantly different results when using a shorter versus a longer delay time. Average gray matter perfusion was 15.8% larger when measured at delay times of w=800 ms versus w=1200 ms, while nidal perfusion was 15.7% larger and venous perfusion was 34.6% larger, respectively.In conclusion, the extremely high perfusion within an AVM could be successfully quantified using CASL. A shorter postlabeling delay time of w=800 ms seems to be more appropriate than a longer time of w=1200 ms because of possible inflow of unlabeled spins at the latter.  相似文献   

4.
《Magnetic resonance imaging》1998,16(9):1005-1012
The objective of this study was to investigate the role of contrast enhancement using a three-dimensional (3D) phase-contrast (PC) magnetic resonance (MR) sequence (3D PC-MRA) and to assess the value of a dynamic MR perfusion study of the kidneys to determine the hemodynamic relevance of unilateral renal artery stenosis (RAS). Seventeen patients with unilateral RAS were examined on a standard 1.0 T imaging system using a phase shift and magnitude sensitive 3D PC sequence (TR = 160 ms, TE = 9 ms, venc. 30 cm/s). Following the initial pre-contrast 3D PC-MRA a dynamic first pass perfusion study was performed using a Turbo-FLASH 2D sequence (TR = 4.5 ms, TE = 2.2 ms, TI = 400 ms) after bolus injection of 0.15 mmol gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA)/kg body weight. The 3D PC-MRA was then repeated during infusion of 0.15 mmol Gd-DTPA/kg body weight. Evaluation by three independent readers was based on maximum intensity projection images. Source images were rendered on request. Signal intensity (SI) over time curves of the renal cortex were obtained from the dynamic perfusion study and analyzed for maximum signal enhancement as well as temporal relationship to the aortic SI curve. Results from 3D PC-MRA revealed a sensitivity (pre-/post-contrast) of 100%/89%, specificity of 76%/63%, positive predictive value of 80%/69%, negative predictive value of 90%/78%, and accuracy of 85%/75% (p = 0.07). Interobserver agreement was κ = 0.61/κ = 0.47 (pre/post Gd-DTPA), respectively. Increased signal-to-noise was present in all segments of the renal arteries post contrast (p = 0.0003). This came along with image degradation due to aliasing and elevated SI of venous flow that partially obscured the renal arteries. Dynamic SI curves showed a significantly decreased maximum SI in RAS (p = 0.01–0.001). A temporal delay of cortical signal intensity enhancement could not be confirmed in this setting. Gd-enhanced 3D PC-MRA did not yield a superior diagnostic value in the diagnosis of RAS compared to pre-contrast measurements. Dynamic perfusion imaging of the kidneys, in combination with 3D PC-MRA, can contribute additional information in suspected unilateral RAS.  相似文献   

5.
《Magnetic resonance imaging》1998,16(9):1049-1055
Spin-lattice (T1) relaxation times were measured by an inversion-recovery magnetic resonance imaging method with a slice-selective inversion pulse (SIP), a non-selective rectangular inversion pulse (RIP), or a B1-insensitive adiabatic inversion pulse (AIP). Data analysis either assumed perfect inversion (two-parameter fit) or allowed for imperfect inversion (three-parameter fit). Imperfect inversion pulses caused low T1 values in phantoms with a two-parameter fit, while three-parameter T1 estimates were accurate over the range 430–2670 ms. A difference of ∼10% between two-parameter and three-parameter T1 values in normal human brain tissue was attributed to B1 inhomogeneity with the slice-selective inversion pulse and rectangular inversion pulse, to the slice profile with the slice-selective inversion pulse, and to T2 effects for the adiabatic inversion pulse. Any T1 method that relies on accurate flip angles may have a significant systematic error in vivo. Phantom accuracy does not ensure accuracy in vivo, because phantoms may have a more homogeneous B1 field and a longer T2 than do biological samples.  相似文献   

6.
The correlation between the concentration and proton relaxation of bile was studied by examining sequential changes in the MR image appearance and relaxation times of gallbladder bile during a 24-h fasting period in dogs. Bile relaxation times computed from images showed progressive shortening during the first 4–8 h of fasting: T1 decreased from 500–900 ms to 250–400 ms and T2 from 130–190 ms to 70–100 ms at 0.15 T. Similar in vitro results at 0.47 T were obtained on aspirated bile samples. Relaxation times of gallbladder bile remained longer than those of the liver, and we conclude that in general the gallbladder will appear less intense than the liver on T1-weighted images (with short enough TE) and more intense on T2-weighted images regardless of the bile concentration. The liver/gallbladder contrast may reverse in a normal subject during fasting for pulse sequences combining both T1 and T2 effects, which may be explored for the possible visual detection of abnormal gallbladder function on an image.  相似文献   

7.
Optimizing tissue contrast in magnetic resonance imaging   总被引:1,自引:1,他引:0  
Magnetic resonance imaging demands that tissue contrast and signal-to-noise advantages be sought in each component of the imaging system. One component of magnetic resonance imaging in which contrast and signal-to-noise ratios are easily manipulated is in the choice of pulse sequences and interpulse delay times. This article provides a general method for determining the best choices of interpulse delay times in pulse sequences and applies that method to saturation recovery, inversion recovery, and spin-echo sequences. Saturation recovery and inversion recovery sequences with rephasing pulses, and tissues with unequal hydrogen densities are considered. Optimization of pulse sequences is carried out for the two distinct cases of (a) a fixed number of sequence repetitions and (b) a fixed total imaging time. Analytic expressions are derived or approximate expressions are provided for the interpulse delay times that optimize contrast-to-noise ratios in each pulse sequence. The acceptable range of interpulse delay times to obtain reasonable contrast using each pulse sequence is discussed.  相似文献   

8.

Purpose

To present diffusion and perfusion magnetic resonance imaging (MRI) characteristics of focal nodular hyperplasia (FNH) of the liver.

Materials and Methods

Thirty-five patients with 52 FNHs (21 were pathologically-confirmed) underwent MRI at 1.5-T device. MR diffusion [diffusion-weighted imaging (DWI)] was performed using a free-breathing single-shot, spin-echo, echo-planar sequence with b gradient factor value of 500 s/mm². MR perfusion [perfusion-weighted imaging (PWI)] consisted of a 3D free-breathing LAVA sequence repeated up to 5 minutes after injection of 7 mL Gd-BOPTA (MultiHance, Bracco, Italy) and 20 mL saline flush at a flow rate of 4 mL/s. Apparent diffusion coefficient (ADC) and time-signal intensity curve (TSIC) were obtained for both normal liver and each FNH by two reviewers in conference; maximum enhancement (ME) percentage, time to peak enhancement (TTP), and maximal slope (MS) were also calculated.

Results

On DWI mean ADC value was 1.624×10− 3 mm2/s for normal liver and 1.629×10− 3 mm2/s for FNH. ADC value for each FNH and the normal liver was not statistically different (P= .936). On PWI, TSIC-Type 1 (quick and marked enhancement and quick decay followed by slowly decaying) was observed in all 52 FNHs, and TSIC-Type 2 (fast enhancement followed by slowly decaying plateau) in all normal livers. The mean ME, TTP and MS values were significantly different for FNH and normal liver (P= .005).

Conclusion

FNHs of the liver showed typical diffusion and perfusion MRI characteristics in all cases. On the ADC map, we could get similar value between the FNHs and the background parenchyma. On the perfusion imaging, FNHs showed a different pattern distinguished from the background liver.  相似文献   

9.
The purpose of this study was to optimize an inversion-recovery (IR) turbo fast low-angle shot (FLASH) for multislice imaging by evaluating the accuracy of calculated the relaxation-rate (R1) for different inversion times (TI). This is important for tracer kinetic modeling because it requires a system responding linearly to input. R1 are linearly related to changes in the concentration of gadolinium (Gd)-diethylenetriaminepentaacetic acid (DTPA), and R1 is a parameter that can be derived from the magnetic resonance (MR) signal. The accuracy of calculated R1 using an IR turbo fast low-angle shot was evaluated in phantoms and for increasing TIs using spectroscopically measured R1 values as reference. Signal curves, obtained in vivo after a bolus injection of Gd-DTPA, were used in an analytical computer program to study the effect of different TI-values on accurate calculation of R1. Results show that TIeff should be <200 ms to measure the bolus-passage of Gd-DTPA in blood accurately, whereas the myocardial response can be measured correctly for TIeff < 870 ms at 1.5 T. The initial slope of the myocardial signal enhancement curve becomes steeper for larger TI values, whereas the calculated R1 curves were similar, indicating that these curves, rather than signal curves, are more suitable even for qualitative perfusion evaluation. It is concluded that the results can be incorporated in a multislice IR turbo fast low-angle shot using the first slice (with a short TI) for assessment of both the arterial input function and the tissue response and the second slice in another position for assessment of the tissue response alone.  相似文献   

10.
现有B超成像可以提供基于声阻抗差异的组织解剖结构信息,而近年来研究发现,光声成像可以提供标记组织成分的分布和功能信息。本文基于商用B超仪和脉冲激光系统建立了光声超声双模态成像系统,实现了超声组织结构成像和光声生物功能的同时成像。首先基于血红蛋白在某些波段的较强吸光性,实现了肿瘤内部组织血管灌注图像;其次用链接有靶向抗体的纳米颗粒作为靶向光声造影剂,对恶性肿瘤边缘和内部的血管以及血管附近的肿瘤组织进行了成像。最终,通过超声和光声的融合图像提供的肿瘤结构信息与光声图像提供的肿瘤功能信息,可以准确识别肿瘤组织。  相似文献   

11.
The focus of contrast-enhanced ultrasound research has developed beyond visualizing the blood pool and its flow to new areas such as perfusion imaging, drug and gene therapy, and targeted imaging. In this work comparison between the application of polymer- and phospholipid-shelled ultrasound contrast agents (UCAs) for characterization of the capillary microcirculation is reported. All experiments are carried out using a microtube as a vessel phantom. The first set of experiments evaluates the optimal concentration level where backscattered signal from microbubbles depends on concentration linearly. For the polymer-shelled UCAs the optimal concentration level is reached at a value of about 2 × 104 MB/ml, whereas for the phospholipid-shelled UCAs the optimal level is found at about 1 × 105 MB/ml.Despite the fact that the polymer shell occupies 30% of the radius of microbubble, compared to 0.2% of the phospholipid-shelled bubble, approximately 5-fold lower concentration of the polymer UCA is needed for investigation compared to phospholipid-shelled analogues. In the second set of experiments, destruction/replenishment method with varied time intervals ranging from 2 ms to 3 s between destructive and monitoring pulses is employed. The dependence of the peak-to-peak amplitude of backscattered wave versus pulse interval is fitted with an exponential function of the time γ = A(1 − exp(−βt)) where A represents capillary volume and the time constant β represents velocity of the flow. Taking into account that backscattered signal is linearly proportional to the microbubble concentration, for both types of the UCAs it is observed that capillary volume is linearly proportional to the concentration of the microbubbles, but the estimation of the flow velocity is not affected by the change of the concentration. Using the single capillary model, for the phospholipid-shelled UCA a delay of about 0.2-0.3 s in evaluation of the perfusion characteristics is found while polymer-shelled UCA provide response immediately. The latter at the concentration lower than 3.6 × 105 MB/ml have no statistically significant delay (< 0.01), do not cause any attenuation of the backscattered signal or saturation of the receiving part of the system. In conclusion, these results suggest that the novel polymer-shelled microbubbles have a potential to be used for perfusion evaluation.  相似文献   

12.
Attenuation estimation and imaging in the cervix has been utilized to evaluate the onset of cervical ripening during pregnancy. This feature has also been utilized for the acoustic characterization of leiomyomas and myometrial tissue. In this paper, we present direct narrowband substitution measurement values of the variation in the ultrasonic attenuation coefficient in ex vivo human uterine and cervical tissue, in the 5-10 MHz frequency range. At 5 MHz, the attenuation coefficient values are similar for the different orientations of uterine tissue with values of 4.1-4.2 dB/cm, 5.1 dB/cm for the leiomyoma, and 6.3 dB/cm for the cervix. As the frequency increases, the attenuation coefficient values increase and are also spread out, with a value of approximately 12.6 dB/cm for the uterus (both parallel and perpendicular), 16.0 for the leiomyoma, and 26.8 dB/cm for the cervix at 10 MHz. The attenuation coefficient measured increases monotonically over the frequency range measured following a power law.  相似文献   

13.
Ignition delay times (IDT) for high-octane-number gasolines and gasoline surrogates were measured at very high pressures behind reflected shock waves. Fuels tested include gasoline, gasoline with oxygenates, and two surrogate fuels, one dominated by iso-octane and one by toluene. RON/MON for the fuels varied from 101/94 to 106.5/91.5. Measurements were conducted in synthetic air at pressures from 30 to 250 atm, for temperatures from 700 to 1100 K, and equivalence ratios near 0.85. Results were compared with a recent gasoline mechanism of Mehl et al. (2017). IDT measurements of the iso-octane-dominated surrogate were very well reproduced by the model over the entire pressure and temperature range. IDT measurements for the toluene-dominated surrogate were also reproduced by the model to a lesser extent. By contrast, IDT measurements for the neat gasoline and gasoline with oxygenates, show excellent agreement with the trends of the Mehl et al. model only below 900 K. Above 900 K, the model returned IDT values for the two gasolines that were approximately 1.6× the measured values. Finally, we observed that IDT measurements for the toluene-dominated surrogate fuel and the two gasolines, near 70 atm and below 900 K, appeared to be shortened, possibly by non-homogeneous ignition or non-ideal gas processes. This dataset provides a critically needed set of IDT targets to test and refine boosted gasoline models at high pressures.  相似文献   

14.
In the traumatically injured spinal cord, decreased perfusion is believed to contribute to secondary tissue damage beyond the primary mechanical impact, and restoration of perfusion is believed to be a promising therapeutic target. However, methods to monitor spinal cord perfusion non-invasively are limited. Perfusion magnetic resonance imaging (MRI) techniques established for the brain have not been routinely adopted to the spinal cord. The purpose of this study was to examine the relationship between spinal cord blood flow (SCBF) and injury severity in a rat thoracic spinal cord contusion injury (SCI) model using flow-sensitive alternating inversion recovery (FAIR) with two variants of the label position. SCBF as a marker of severity was compared to T1 mapping and to spinal cord-optimized diffusion weighted imaging (DWI) with filtered parallel apparent diffusion coefficient. Thirty-eight rats underwent a T10 contusion injury with varying severities (8 sham; 10 mild; 10 moderate; 10 severe) with MRI performed at 1 day post injury at the lesion site and follow-up neurological assessments using the Basso, Beattie, Bresnahan (BBB) locomotor scoring up to 28 days post injury. Using whole-cord regions of interest at the lesion epicenter, SCBF was decreased with injury severity and had a significant correlation with BBB scores at 28 days post injury. Importantly, estimates of arterial transit times (ATT) in the injured spinal cord were not altered after injury, which suggests that FAIR protocols optimized to measure SCBF provide more value in the context of acute traumatic injury to the cord. T1-relaxation time constants were strongly related to injury severity and had a larger extent of changes than either SCBF or DWI measures. These findings suggest that perfusion decreases in the spinal cord can be monitored non-invasively after injury, and multi-parametric MRI assessments of perfusion, diffusion, and relaxation capture unique features of the pathophysiology of preclinical injury.  相似文献   

15.

Purpose

Previous studies reporting relaxation times within atherosclerotic plaque have typically used dedicated small-bore high-field systems and small sample sizes. This study reports quantitative T1, T2 and T2? relaxation times within plaque tissue at 1.5 T using spatially co-matched histology to determine tissue constituents.

Methods

Ten carotid endarterectomy specimens were removed from patients with advanced atherosclerosis. Imaging was performed on a 1.5-T whole-body scanner using a custom built 10-mm diameter receive-only solenoid coil. A protocol was defined to allow subsequent computation of T1, T2 and T2? relaxation times using multi-flip angle spoiled gradient echo, multi-echo fast spin echo and multi-echo gradient echo sequences, respectively. The specimens were subsequently processed for histology and individually sectioned into 2-mm blocks to allow subsequent co-registration. Each imaging sequence was imported into in-house software and displayed alongside the digitized histology sections. Regions of interest were defined to demarcate fibrous cap, connective tissue and lipid/necrotic core at matched slice-locations. Relaxation times were calculated using Levenberg-Marquardt's least squares curve fitting algorithm. A linear-mixed effect model was applied to account for multiple measurements from the same patient and establish if there was a statistically significant difference between the plaque tissue constituents.

Results

T2 and T2? relaxation times were statistically different between all plaque tissues (P=.026 and P=.002 respectively) [T2: lipid/necrotic core was lower 47±13.7 ms than connective tissue (67±22.5 ms) and fibrous cap (60±13.2 ms); T2?: fibrous cap was higher (48±15.5ms) than connective tissue (19±10.6 ms) and lipid/necrotic core (24±8.2 ms)]. T1 relaxation times were not significantly different (P=.287) [T1: Fibrous cap: 933±271.9 ms; connective tissue (1002±272.9 ms) and lipid/necrotic core (1044±304.0 ms)]. We were unable to demarcate hemorrhage and calcium following histology processing.

Conclusions

This study demonstrates that there is a significant difference between qT2 and qT2? in plaque tissues types. Derivation of quantitative relaxation times shows promise for determining plaque tissue constituents.  相似文献   

16.

Purpose

In vivo magnetic resonance (MR) tracking of magnetically labeled bone marrow mesenchymal stem cells (BMSCs) administered via the mesenteric vein to rats with liver fibrosis.

Materials and Methods

Rat BMSCs were labeled with superparamagnetic iron oxide (SPIO) and the characteristics of the BMSCs after labeling were investigated. Eighteen rats with CCL4-induced liver fibrosis were randomized to three groups to receive SPIO-labeled BMSCs (BMSC-labeled group), cell-free SPIO (SPIO group), or unlabeled BMSCs (control group). MR imaging of the liver was performed at different time points, and signal-to-noise ratio (SNR) of the liver was measured. In vivo distribution of delivered BMSCs was assessed by histological analysis.

Results

Labeling of BMSCs with SPIO did not significantly alter cell viability and proliferation activity. In BMSC-labeled group, the liver SNR immediately decreased from 8.56±0.26 to 3.53±0.41 at 1 h post injection and remained at a significantly lower level till 12 days (P<.05 versus the level before). By contrast, the liver SNR of the SPIO group almost recovered to the preinjection level (P=.125) at 3 days after a transient decrease. In control group, the liver SNR demonstrated no significant difference at the tested time points. Additionally, Prussian blue-positive cells were mainly distributed in the liver parenchyma, especially in injured areas.

Conclusion

The magnetically labeled BMSCs infused through the mesenteric vein can be detected in the fibrotic liver of rats using in vivo MR imaging up to 12 days after injection.  相似文献   

17.
Wideband harmonic imaging (with phase inversion for improved tissue suppression) was compared to fundamental imaging in vivo. Four woodchucks with naturally occurring liver tumors were injected with Imagent (Alliance Pharmaceutical Corp., San Diego, CA). Randomized combinations of dose (0.05, 0.2 and 0.4 ml/kg) and acoustic output power (AO; 5, 25 and 63% or MI < or = 0.9) were imaged in gray scale using a Sonoline Elegra scanner (Siemens Medical Systems, Issaquah, WA). Tumor vascularity, conspicuity and contrast enhancement were rated by three independent observers. Imagent produced marked tumor enhancement and improved depiction of neovascularity at all dosages and AO settings in both modes. Tumor vascularity and enhancement correlated with mode, dose and AO (P < 0.002). Fundamental imaging produced more enhancement (P < 0.05), but tumor vascularity and conspicuity were best appreciated in harmonic mode (P < 0.05). Under the conditions studied here, the best approach was wideband harmonic imaging with 0.2 ml/kg of Imagent at an AO of 25%.  相似文献   

18.
Using ab initio molecular dynamics simulations, the local atomic structure and electronic properties of supercooled liquid Si (l-Si) at different temperatures from 1700 to 1100 K were studied. Our calculated coordination numbers present no obvious change in the temperature range investigated. Our results indicate that the structure of supercooled l-Si may be well described as a combined local atomic configuration of white-tin and diamond type structures. Upon cooling from 1700 to 1100 K, the tetrahedral white-tin type ordering collapses gradually toward the tetrahedral diamond-type structure. No drastic change behavior is observed in our work.  相似文献   

19.
Twenty-seven patients with soft-tissue tumors were examined with a Picker 0.15-tesla resistive magnet and by computed tomography (CT). In all but one patient, MRI was better than or equal to CT in defining the anatomic extent of the tumor. We could determine whether major vascular structures were engulfed by the tumor in 80% of the MRI examinations but only in 62% of the CT scans. MRI and CT were equally effective in determining the presence or absence of bony invasion. The MRI images of all the tumors showed increased signal intensity relative to normal muscle when spin-echo (SE) sulse sequences with long repeat times were used (SE: echo time [TE], 60 ms; repetition time [TR], 2,000 ms). When T1 weighted pulse sequences were used (SE: TE, 30 ms; TR, 500 ms or inversion recovery: inversion time, 500 ms; TE, 40 ms; TR, 2,000 ms) the malignant tumors showed decreased signal intensity compared to normal muscle. Only lipomas showed high signal intensity on both T1 and T2 weighted pulse sequences.  相似文献   

20.

Purpose

The objective of this work was to evaluate the diagnostic performance of the intravoxel incoherent motion (IVIM) model to differentiate between healthy and malignant prostate tissue.

Materials and Methods

Regions of interest were drawn in healthy and cancerous tissue of 13 patients with histologically proven prostate carcinoma and fitted to a monoexponential model [yielding the apparent diffusion coefficient (ADC)] and the IVIM signal equation (yielding the perfusion fraction f, the diffusion constant D and the pseudodiffusion coefficient of perfusion D?). Parameter maps were calculated for all parameters.

Results

The ADC, D and f were significantly (P<.005) lowered in cancerous tissue (1.01±0.22 μm2/ms, 0.84±0.19 μm2/ms and 14.27±7.10%, respectively) compared to benign tissue (1.49±0.17 μm2/ms, 1.21±0.22 μm2/ms and 21.25±8.32%, respectively). Parameter maps of D and f allowed for a delineation of the tumor, but showed higher variations compared to the ADC map.

Conclusion

Apparent diffusion coefficient maps provide better diagnostic performance than IVIM maps for tumor detection. However, the results suggest that the reduction of the ADC in prostate cancer stems not only from changes in cellularity but also from perfusion effects. IVIM imaging might hold promise for the diagnosis of other prostatic lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号