首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methodology for development of compact numerical schemes by the practical finite‐analytic method (PFAM) is presented for spatial and/or temporal solution of differential equations. The advantage and accuracy of this approach over the conventional numerical methods are demonstrated. In contrast to the tedious discretization schemes resulting from the original finite‐analytic solution methods, such as based on the separation of variables and Laplace transformation, the practical finite‐analytical method is proven to yield simple and convenient discretization schemes. This is accomplished by a special universal determinant construction procedure using the general multi‐variate power series solutions obtained directly from differential equations. This method allows for direct incorporation of the boundary conditions into the numerical discretization scheme in a consistent manner without requiring the use of artificial fixing methods and fictitious points, and yields effective numerical schemes which are operationally similar to the finite‐difference schemes. Consequently, the methods developed for numerical solution of the algebraic equations resulting from the finite‐difference schemes can be readily facilitated. Several applications are presented demonstrating the effect of the computational molecule, grid spacing, and boundary condition treatment on the numerical accuracy. The quality of the numerical solutions generated by the PFAM is shown to approach to the exact analytical solution at optimum grid spacing. It is concluded that the PFAM offers great potential for development of robust numerical schemes. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

2.
We extend previous work on nonstandard finite difference schemes for one‐space dimension, nonlinear reaction–diffusion PDEs to the case where linear advection is included. The use of a positivity condition allows the determination of a functional relation between the time and space step‐sizes, and provides schemes that are explicit. The Fisher equation is used to illustrate the method. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 361–364, 2000  相似文献   

3.
In this study an explicit central difference approximation of the generalized leap-frog type is applied to the one- and two-dimensional advection equations. The stability of the considered numerical schemes is investigated and the scheme with the largest stable time step is found. For the linear and nonlinear advection equations numerical experiments with different schemes from the considered class are performed in order to evaluate the practical stability of the designed schemes.  相似文献   

4.
5.
An artificial‐viscosity finite‐difference scheme is introduced for stabilizing the solutions of advection‐diffusion equations. Although only the linear one‐dimensional case is discussed, the method is easily susceptible to generalization. Some theory and comparisons with other well‐known schemes are carried out. The aim is, however, to explain the construction of the method, rather than considering sophisticated applications. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 581–588, 1999  相似文献   

6.
Summary For the linear advection equation we consider explicit multi-time-level schemes of highest order which are one step in space direction only. If a stencil involvesk time steps we show that it is stable in theL 2-sense for Courant numbers in the interval (0, 1/k). Since the order is 2k–1 one can use these schemes for high order discretization of the boundary conditions in hyperbolic initial value problems.Part of this work has been performed in the project Mehrschritt-Differenzenschemata of the Schwerpunktprogramm Finite Approximationen in der Strömungsmechanik which has been supported by the DFG  相似文献   

7.
In this article, some conservative compact difference schemes are explored for the strongly coupled nonlinear schrödinger system. After transforming the scheme into matrix form, we prove the existence and uniqueness, convergence and stability of the difference solutions for one nonlinear scheme in the norm by using some techniques of matrix theory. Numerical results show that one nonlinear scheme is the most efficient of all the compact schemes constructed here. It allows much larger time steps than the others. The second most efficient compact scheme is a linear one. We then give numerical simulations to two soliton interactions for the two most efficient compact schemes. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 749–772, 2014  相似文献   

8.
In this article, a compact finite difference method is developed for the periodic initial value problem of the N‐coupled nonlinear Klein–Gordon equations. The present scheme is proved to preserve the total energy in the discrete sense. Due to the difficulty in obtaining the priori estimate from the discrete energy conservation law, the cut‐off function technique is employed to prove the convergence, which shows the new scheme possesses second order accuracy in time and fourth order accuracy in space, respectively. Additionally, several numerical results are reported to confirm our theoretical analysis. Lastly, we apply the reliable method to simulate and study the collisions of solitary waves numerically.  相似文献   

9.
We construct finite difference schemes for a particular class of one‐space dimension, nonlinear reaction‐diffusion PDEs. The use of nonstandard finite difference methods and the imposition of a positivity condition constrain the schemes to be explicit and allow the determination of functional relations between the space and time step‐sizes. The general procedure is illustrated by applying it to several important model systems of PDEs © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 201–214, 1999  相似文献   

10.
In this paper, alternating direction implicit compact finite difference schemes are devised for the numerical solution of two-dimensional Schrödinger equations. The convergence rates of the present schemes are of order O(h4+τ2). Numerical experiments show that these schemes preserve the conservation laws of charge and energy and achieve the expected convergence rates. Representative simulations show that the proposed schemes are applicable to problems of engineering interest and competitive when compared to other existing procedures.  相似文献   

11.
In this article, we discuss finite‐difference methods of order two and four for the solution of two‐and three‐dimensional triharmonic equations, where the values of u,(?2u/?n2) and (?4u/?n4) are prescribed on the boundary. For 2D case, we use 9‐ and for 3D case, we use 19‐ uniform grid points and a single computational cell. We introduce new ideas to handle the boundary conditions and do not require to discretize the boundary conditions at the boundary. The Laplacian and the biharmonic of the solution are obtained as byproduct of the methods. The resulting matrix system is solved by using the appropriate block iterative methods. Computational results are provided to demonstrate the fourth‐order accuracy of the proposed methods. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

12.
13.
In this article, two kinds of high‐order compact finite difference schemes for second‐order derivative are developed. Then a second‐order numerical scheme for a Riemann–Liouvile derivative is established based on a fractional centered difference operator. We apply these methods to a fractional anomalous subdiffusion equation to construct two kinds of novel numerical schemes. The solvability, stability, and convergence analysis of these difference schemes are studied by using Fourier method. The convergence orders of these numerical schemes are and , respectively. Finally, numerical experiments are displayed which are in line with the theoretical analysis. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 213–242, 2016  相似文献   

14.
In this paper, we present two higher-order compact finite difference schemes for solving one-dimensional (1D) heat conduction equations with Dirichlet and Neumann boundary conditions, respectively. In particular, we delicately adjust the location of the interior grid point that is next to the boundary so that the Dirichlet or Neumann boundary condition can be applied directly without discretization, and at the same time, the fifth or sixth-order compact finite difference approximations at the grid point can be obtained. On the other hand, an eighth-order compact finite difference approximation is employed for the spatial derivative at other interior grid points. Combined with the Crank–Nicholson finite difference method and Richardson extrapolation, the overall scheme can be unconditionally stable and provides much more accurate numerical solutions. Numerical errors and convergence rates of these two schemes are tested by two examples.  相似文献   

15.
The stability properties of thirteen difference schemes for a class of evolution equations are studied, and implications for a class of Korteweg-de Vries (KdV)-equations are discussed.  相似文献   

16.
We introduce finite‐difference schemes based on a special upwind‐type collocation grid, in order to obtain approximations of the solution of linear transport‐dominated advection‐diffusion problems. The method is well suited when the diffusion parameter is very small compared to the discretization parameter. A theory is developed and many numerical experiments are shown. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

17.
In this article, we consider two‐dimensional fractional subdiffusion equations with mixed derivatives. A high‐order compact scheme is proposed to solve the problem. We establish a sufficient condition and show that the scheme converges with fourth order in space and second order in time under this condition.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 2141–2158, 2017  相似文献   

18.
Finite difference schemes for the numerical solution of singularly perturbed convection problems on uniform grids are studied in the limit case where the viscosity and the meshsize approach zero at the same time. The present error estimates are given in terms of order of magnitude in the above limit process and are useful in a priori choosing adequate schemes and meshsizes for boundary‐layer problems and problems with closed characteristics. Published 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 280–295, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10007  相似文献   

19.
20.
In this article, first, we establish some compact finite difference schemes of fourth‐order for 1D nonlinear Kuramoto–Tsuzuki equation with Neumann boundary conditions in two boundary points. Then, we provide numerical analysis for one nonlinear compact scheme by transforming the nonlinear compact scheme into matrix form. And using some novel techniques on the specific matrix emerged in this kind of boundary conditions, we obtain the priori estimates and prove the convergence in norm. Next, we analyze the convergence and stability for one of the linearized compact schemes. To obtain the maximum estimate of the numerical solutions of the linearized compact scheme, we use the mathematical induction method. The treatment is that the convergence in norm is obtained as well as the maximum estimate, further the convergence in norm. Finally, numerical experiments demonstrate the theoretical results and show that one of the linearized compact schemes is more accurate, efficient and robust than the others and the previous. It is worthwhile that the compact difference methods presented here can be extended to 2D case. As an example, we present one nonlinear compact scheme for 2D Ginzburg–Landau equation and numerical tests show that the method is accurate and effective. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 2080–2109, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号