首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tobias Harth 《PAMM》2003,2(1):188-189
The identification of material parameters of constitutive models is based on identification experiments. Since even specimens from the same lot show high deviations in the experimental data, the identification of the material parameters leads to different results for one and the same material. The number of identification experiments is usually not large enough for a statistical analysis of the deviations in the identified parameters. In order to overcome this problem we present a method of stochastic simulation which is based on time series analysis for generating artificial data with the same stochastic behaviour as the experimental data. The stochastic simulations allow an investigation of the confidence in the fits of the material parameters. We validate the stochastic simulations by comparing the results of the parameter identification from experimental data with the results from artificial data. The presented simulation method applied here turns out to be a suitable tool for generating artificial data for various kinds of analysis purposes. However, it is very important to take into account that the machines which perform the experiments do not maintain constant strain rates in the loading history of the tension and cyclic experiments.  相似文献   

2.
In this contribution we investigate the mechanical behaviour of polyurethane over a range of different but constant temperatures from the glass to the viscoelastic state. Therefore uniaxial tension tests are performed on dogbone specimens under different isothermal conditions. In this manner an experimental data set is provided. As a theoretical basis we present the well known thermomechanically coupled one dimensional linear viscoelastic material model which is able to display the experimentally observed material behaviour. For this we adopt temperature dependent relaxation times. The introduced model parameters are identified via a standard parameter identification tool. Finally, the experimental results are compared with the ones of simulations of the identified model parameters. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Open cell aluminum metal foams are a new kind of material that are used in composite structures to reduce their weight, to increase their sound or energy absorption capability or to decrease their thermal conductivity. The design and analysis of such structures requires a macroscopic constitutive model of the foam that has to be determined by various experiments under different loading conditions. We support this procedure by analyzing the microstructure of the metal foam numerically under large deformations. To this end, we employ the finite cell method that can deal with large deformations and allows for an automatic and efficient discretization of the CT-image of the foam. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The overall deformation behavior of rubber-toughened polymers (e.g. PC/ABS blends) exhibits a pronounced plastic dilatancy. As this volume increase results from diverse micromechanisms the appropriate structure of a macroscopic model is not obvious. In this contribution, different material models featuring plastic dilatancy are compared with regard to their ability to capture the deformation behavior of PC/ABS in different loading situations. All models are calibrated to match experimental data under uniaxial tension in terms of true stress-strain curves and the evolution of volume strain. Afterwards they are employed in finite element (FE) simulations of single-edge-notch-tensile (SENT) tests. Patterns of plastic deformation computed from the different material models are compared to experimental findings. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
O. Klar  W. Ehlers  B. Markert 《PAMM》2002,1(1):141-142
The parameter identification is the interface between a theoretical material model and its application in numerical computations. Only by an accurate identification of the theoretically introduced material parameters, an applicable simulation of the material is achieved. An increasing standard of the parameter identification is set by the requirements of complex material models used in computer‐aided engineering. A common identification strategy is a gradient‐based optimization of a least‐squares functional, e. g. the sequential quadratic programming (SQP) technique. In this paper, the SQP method is used to optimize material models of cellular polymers. In particular, the optimization is shown for a viscoelastic polyurethane (PU) foam. Due to the high‐grade nonlinear material behaviour, the foam is modelled by a finite viscoelastic Ogden type law in the framework of the Theory of Porous Media (TPM).  相似文献   

6.
7.
Hybrid-forming processes for graded structures are quite innovative methods for the production of components with tailored properties, particularly tailored material properties and geometrical shape. In this contribution a hybrid-forming process based on the utilization of locally varying thermo-mechanical effects is investigated [1]. For process optimization and improvement of the resulting work piece the simulation of the entire forming process is necessary in modern engineering. The main topics of this contribution are the simulation of the cyclic thermal loaded forming tool and the simulation of the work piece treated at large deformations with phase transformations. For both materials temperature- and rate-dependent viscoplastic material models are applied and parameter identification using cyclic tensile-compression tests for the forming tool material and phase transformation tests for a low-alloy steel similar to the work piece material is presented. For validation of finite-element-calculations for the forming tool thermal shock experiments are performed with optical deformation measurements. For validation of finite-element-calculations for the work piece numerical results of geometry and structure after heating, forming and cooling are compared to experimental micro sections. Results concerning the forming tool will be used for future lifetime prediction and results concerning the work piece will be used for future specific setting of graded material properties. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Ingo Münch  Patrizio Neff  Werner Wagner 《PAMM》2008,8(1):10559-10560
We discuss and simulate transversal isotropic material under tension loading. The preferential direction of the material is inclined under 45 degrees to the direction of the tensile resultant. In this configuration the deformation of a rectangular test specimen differ from the behaviour of isotropic material in the way, that beside Poissons effect additional displacement appear perpendicular to the tension direction. In classical continuum theories, this transverse deformations describe a typical S–shape. By using a non–local continuum theory, the effect of microstructural orientation is incorporated into the numerical model. Then, it depends on a phenomenological parameter of inner structure whether the energetically favoured configuration is classical or contains microstructural behaviour. In the second case, the transverse deformation is not described by the typical S–shape, but with higher forms of it. A simple experimental model will show the connection between the inner structure of the material and the rotational parameters within the non–local continuum theory. It is evident, that these parameters are responsible for the non–classical behaviour and give the possibility to find energetically favoured solutions. The results of the finite–element–analyses can help to understand constitutive parameters for the non–local continuum theory and to apply it to other specimens. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
In this work we investigate the material behaviour of steel 51CrV4 in classical uniaxial strain controlled tension tests of different strain rates interposed by relaxation steps, in which the equilibrium stress observed is significantly smaller than the stresses seen in slowest strain rate test. Also, some cyclic experiments with different strain rates and amplitudes were done to analyze the hysteresis behaviour of the material. Against this background of experimental data the modeling possibilties of two models are explored: the Lion model and the Chaboche model with kinematic hardening ansatz. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Open-hole tension tests are a part of the qualification process for composite parts that need to be joined to other parts in aircraft structures [1]. With each new material, a new set of tests is required. To reduce costs, it is desirable to develop analysis tools for the prediction of damage and failure in such tests, so that the amount of testing can be reduced and predictions can be made about material behaviour early in the design process. In this paper, an experimental and numerical study is presented on the notched (open-hole) strength of high-strength carbon/epoxy composites (HTA/6376). Open-hole tension tests have been performed on specimens with three different lay-ups — quasi-isotropic, zero-dominated, and cross-ply — in accordance with procedures in available standards. The data observed are being used to develop several methods for predicting the notched strength, and results from one such method using a progressive damage analysis are presented with comparisons with experiments. The predictions of specimen stiffness and failure load were found to agree well with experiments. To gain insight into the failure process, damage progression maps are shown.  相似文献   

11.
O. Avci  W. Ehlers 《PAMM》2007,7(1):4060023-4060024
The prediction of landsliding requires an exact knowledge of the mechanical behaviour of granular materials. This kind of materials, e. g., sand, have a very complex deformation behaviour, which depend on the stress state and on the loading history. In this work, the deformation behaviour of the solid skeleton is characterised via homogeneous triaxial tests on dry sand specimens. Additionally, an appropriate elasto-plastic material law to describe the solid skeleton in the frame of Theory of Porous Media (TPM) is used, which is implemented in the FE tool PANDAS. Furthermore, a single-surface yield criterion with isotropic hardening, which limits the elastic domain, and a non-associated plastic flow are employed. The determination of the material parameters of the linear elasticity law as well as the single-surface yield criterion are based on test data of triaxial experiments. The material parameters are identified using a derivative-based optimisation method (donlp2), which is coupled with PANDAS. Finally, a simulation of a benchmark test is presented to show shear band localisation effects, where the material behaviour is described by a triphasic porous media model based on the TPM, where the constituents are a deformable solid skeleton and two pore fluids, water and air. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
O. Avci  W. Ehlers 《PAMM》2006,6(1):351-352
The simulation of deformation process of landsliding needs the knowledge of the very complex behaviour of granular materials, e. g., sand. The triax experiments on sand show a highly non-linear elasto-plastic material behaviour. Therefore, it is necessary to use a yield criteria, e. g., single-surface yield criteria with isotropic hardening and non-associated plastic potential, which satisfies adequately the requirements of the material properties. This kind of material behaviour can be described by an elasto-plastic material law in the frame of Theory of Porous Media, which is implemented in the FE tool PANDAS. By means of the data of Hostun-Sand, the material parameters of the singlesurface yield criteria are determined by use of a optimization algorithm, namely Sequential Quadratic Programming (SQP) a gradient based optimization method, which is coupled with PANDAS. Using this optimized material parameters, a simulation of a initial boundary-value problem of landsliding is presented. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Multiscale methods are frequently used in the design process of textile reinforced composites. In addition to the models for the local material structure it is necessary to formulate appropriate material models for the constituents. While experiments have shown that the reinforcing fibers can be assumed as linear elastic, the material behavior of the polymer matrix shows certain nonlinearities. These effects are mainly due to strain rate dependent material behavior. Fractional order models have been found to be appropriate to model this behavior. Based on experimental observations of Polypropylene a one-dimensional nonlinear fractional viscoelastic material model has been formulated. Its parameters can be determined from uniaxial, monotonic tensile tests at different strain rates, relaxation experiments and deformation controlled processes with intermediate holding times at different load levels. The presence of a process dependent function for the viscosity leads to constitutive equations which form nonlinear fractional differential equations. Since no analytical solution can be derived for these equations, a numerical handling has been developed. After all, the stress-strain curves obtained from a numerical analysis are compared to experimental results. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
This contribution presents the characterisation of an incompressible carbon black-filled elastomer as one characteristical example for highly filled rubber. It shows a strongly pronounced non-linear viscoelastic behaviour and the most important characteristic is the extremely long relaxation time which has to be taken into account. The material model is developed with respect to uniaxial tension data. The basis in the development of a phenomenological model is given by the basic elasticity. For this evaluation the long term relaxation behaviour results in a complex experimental procedure. Therefore, special attention has to be paid according to an optimised experimental process in order to get the necessary reference data in an adequate and reproduceable way [1]. With this model basis further investigations are taken into account concerning the time-dependent viscoelasticity. Therefore, cyclic deformations from zero up to a maximum of deformation are considered for different strain rates. Furthermore, the relaxation behaviour is investigated for multiple strain levels. The phenomena which are observed in the experimental results yield in a purely viscoelastic model, based on a rheological analogous model consisting of an equilibrium spring and several Maxwell-elements which contain nonlinear relations for the relaxation times of the dashpot elements [1,2]. The material model's numerical realisation is accomplished in two ways. Because of its numerical simplicity especially according to the parameter identification the model is restricted only to the simple case of uniaxial tension. A second, alternative implementation is executed providing the benefit that more complex deformation conditions can also be taken into account. Therefore, the general, three-dimensional finite model is implemented in an open-source Finite Element library [3]. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Serdar Göktepe  Joel Méndez  Christian Miehe 《PAMM》2007,7(1):4060041-4060042
The contribution is concerned with experimental procedures, constitutive modeling and the numerical simulations of finite thermo-viscoplastic behavior of glassy polymers. The experimental study involves both homogeneous and inhomogeneous tests at different temperatures under isothermal conditions. The true stress-true strain curves obtained from compressive homogeneous uniaxial and plane strain experiments are employed in the identification of adjustable material parameters. In contrast to the existing kinematic approaches to finite plasticity of glassy polymers, we propose a distinct kinematic framework constructed in the logarithmic strain space. This leads us to an algorithmically very attractive, additive kinematic structure in R6 similar to the geometrically linear theory. The proposed three-dimensional model is implemented into a finite element code. The load-displacement curves acquired from inhomogeneous experiments are compared against the results obtained from finite element analyses where the material parameters identified from homogeneous experiments are used. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The focus of this work is the identification of a unit cell that is able to represent the microstructure of a closed-cell solid foam to predict the effective behaviour of the foam numerically. For the investigation, a finite element model consisting of a repeating unit cell with periodical boundary conditions is implemented. A tetrakaidecahedral foam microstructure is considered as simplified cell geometry, and a strain-energy based homogenisation concept is utilized. On the basis of image analysis imperfections are applied to the cell. The obtained model is used as a representative volume element (RVE) for further investigations of the postbuckling behaviour of the foams. Different analyses are performed and the results are compared to literature and experimental data. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The material behaviour of skeletal muscles can be decomposed into two parts: an active part, describing the contractile mechanisms, and a passive one, characterising the passive components such as the connective tissue. Computational models are used to support the understanding of complex mechanism inside a muscle. In the present work, we focus on the three-dimensional passive tissue behaviour from the experimental as well as modelling point of view. Therefore, quasi-static experiments have been performed on specimens with regular geometry. By using a three-dimensional optical measurement system the shape of the specimens has been reconstructed at different deformation states. On the modelling side a hyperelastic model with transversal isotropic fibre orientation has been used to describe non-linear stress responses. The model has been validated by performing analyses for different fibre orientations. In summary, it figures out that the proposed modelling approach is able to reflect the experimental results in a satisfying manner. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
19.
Daniel Goerke  Kai Willner 《PAMM》2008,8(1):10275-10276
Conducting experiments is necessary to determine the normal contact stiffness of rough surfaces. In compression tests the interface of specimen pairs is loaded in normal direction and the deflection is measured by extensometers with strain gages. The results can be used for example to describe the contact behaviour of joints in finite element analyses. It is shown that geometrical irregularities which are superposed by the surface roughness have a large influence on the elastic deformation of a joint and on the determination of the contact stiffness. They can be characterized by a skewed and a waved form of the surface with wavelengths which are larger than the surface roughness. In the experimental setup several different surfaces are compressed. In addition, the influence of the size of the contact area on the deformation of a joint is analysed. The results of the normal contact tests are compared with numerical simulations. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The material under consideration is a thermoplastic copolymer blend of polypropylene and polyethylene (PP/PE), constituting the core layer of a steel/polymer/steel composite material. A biaxial loading machine was developed for studying the behavior of the copolymer subjected to in-plane complex stress states. A study on the shape of the specimen by means of numerical finite element simulations and preliminary experimental tests are carried out, in order to obtain a maximization of the strain distribution in the middle region of the cruciform specimen. Afterwards, the sensitivity of the mechanical response under both equibiaxial and non-equibiaxial conditions is addressed. All the experiments are monitored by means of a digital image correlation (DIC) system, providing full-field measurements of the displacements, and, consequently, of the strain distribution. The presented experimental results will be used for validating the material model developed for the PP/PE layer material. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号