首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monodisperse thermosensitive dumbbell‐shaped core‐shell microgels are fabricated, which consist of a polystyrene core with a cross‐linked poly (N‐isopropylacrylamide) shell. The morphology of the microgels was investigated through cryogenic transmission electron microscopy and depolarized dynamic light scattering. The effective volume fraction and aspect ratio of the system could be adjusted through the swelling of the thermosensitive shell. We observe a phase transition of the microgels to an ordered, crystal‐like state, which is apparent through Bragg‐reflections in the visible range. These observations are further supported by rheological measurements where the shear‐melting of the crystal phase is clearly detected.  相似文献   

2.
A two‐stage precipitation polymerization in aqueous solution was used to prepare β‐cyclodextrin/poly(N‐isopropylacrylamide) (β‐CD/PNIPAm) core–shell microgels. At the first stage, core microgels with CD moieties were synthesized by precipitation copolymerization of N‐isopropylacrylamide (NIPAm) with a monovinyl β‐CD monomer. At the second stage, using the core particles as seeds, PNIPAm shell were further added onto the seeds by NIPAm polymerization. The microgels were characterized by means of Zetasizer Nano‐ZS dynamic light scattering, TEM, IR, NMR, DSC, and TGA measurements. Using paeonol as a model drug molecule, the release behaviors of the microgels were investigated. The result indicates that the core–shell microgels could respond to change in temperature. Furthermore, the release of paeonol was related to supramolecular inclusion behavior of β‐CD and temperature sensitivity of PNIPAm.

  相似文献   


3.
In this research, thermo‐ and pH‐responsive chitosan‐based porous nanoparticles were prepared by the temperature‐dependent self assembly method. The chitosan‐graft‐poly(N‐isopropylacrylamide) (CS‐g‐PNIPAAm) copolymer solution was prepared through polymerization of N‐isopropylacrylamide (NIPAAm) monomer in the presence of chitosan (CS) solution using cerium ammounium nitrate as the initiator. Then, CS‐g‐PNIPAAm solution was diluted by deionized water and heated to 40 °C for CS‐g‐PNIPAAm self‐assembly. After that, CS‐g‐PNIPAAm assembled to form micelles in which shell layer was CS. Crosslinking agent was used to reinforce the micelle structure to form nanoparticle. The molar ratio of CS/NIPAAm in the feed mixture was changed to investigate its effect on structure, morphology, thermal‐ and pH‐responsive properties of the nanoparticles. TEM images showed that a porous structure of nanoparticles was developed. The synthesized nanoparticles carried positive charges on the surface and exhibited stimuli‐responsive properties, and their mean diameter thus could be manipulated by changing pH value and temperature of the environment. The nanoparticles showed a continuous release of the encapsulated doxycycline hyclate up to 10 days during an in‐vitro release experiment. These porous particles with environmentally sensitive properties are expected to be utilized in hydrophilic drug delivery system. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5126–5136, 2009  相似文献   

4.
A series of novel temperature‐ and pH‐responsive graft copolymers, poly(L ‐glutamic acid)‐g‐poly(N‐isopropylacrylamide), were synthesized by coupling amino‐semitelechelic poly(N‐isopropylacrylamide) with N‐hydroxysuccinimide‐activated poly(L ‐glutamic acid). The graft copolymers and their precursors were characterized, by ESI‐FTICR Mass Spectrum, intrinsic viscosity measurements and proton nuclear magnetic resonance (1H NMR). The phase‐transition and aggregation behaviors of the graft copolymers in aqueous solutions were investigated by the turbidity measurements and dynamic laser scattering. The solution behavior of the copolymers showed dependence on both temperature and pH. The cloud point (CP) of the copolymer solution at pH 5.0–7.4 was slightly higher than that of the solution of the PNIPAM homopolymer because of the hydrophilic nature of the poly(glutamic acid) (PGA) backbone. The CP markedly decreased when the pH was lowered from 5 to 4.2, caused by the decrease in hydrophilicity of the PGA backbone. At a temperature above the lower critical solution temperature of the PNIPAM chain, the copolymers formed amphiphilic core‐shell aggregates at pH 4.5–7.4 and the particle size was reduced with decreasing pH. In contrast, larger hydrophobic aggregates were formed at pH 4.2. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4140–4150, 2008  相似文献   

5.
SiO2–PNIPAAm core–shell microgels (PNIPAAm=poly(N‐isopropylacrylamide)) with various internal cross‐linking densities and different degrees of polymerization were prepared in order to investigate the effects of stability, packing, and temperature responsiveness at polar–apolar interfaces. The effects were investigated using interfacial tensiometry, and the particles were visualized by cryo‐scanning electron microscopy (SEM) and scanning force microscopy (SFM). The core–shell particles display different interfacial behaviors depending on the polymer shell thickness and degree of internal cross‐linking. A thicker polymer shell and reduced internal cross‐linking density are more favorable for the stabilization and packing of the particles at oil–water (o/w) interfaces. This was shown qualitatively by SFM of deposited, stabilized emulsion droplets and quantitatively by SFM of particles adsorbed onto a hydrophobic planar silicon dioxide surface, which acted as a model interface system. The temperature responsiveness, which also influences particle–interface interactions, was investigated by dynamic temperature protocols with varied heating rates. These measurements not only showed that the particles had an unusual but very regular and reversible interface stabilization behavior, but also made it possible to assess the nonlinear response of PNIPAAm microgels to external thermal stimuli.  相似文献   

6.
In this work, the poly(methyl methacrylate‐co‐methacrylic acid)/poly(methacrylic acid‐co‐N‐isopropylacrylamide) thermosensitive composite semi‐hollow latex particles was synthesized by three processes. The first process was to synthesize the poly(methyl methacrylate‐co‐methacrylic acid) (poly (MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. The second process was to polymerize methacrylic acid (MAA), N‐isopropylacrylamide (NIPAAm), and crosslinking agent, N,N′‐methylenebisacrylamide, in the presence of poly(MMA‐MAA) latex particles to form the linear poly(methyl methacrylate‐co‐methacrylic acid)/crosslinking poly(methacrylic acid‐co‐N‐isopropylacrylamide) (poly(MMA‐MAA)/poly(MAA‐NIPAAm)) core–shell latex particles with solid structure. In the third process, part of the linear poly(MMA‐MAA) core of core–shell latex particles was dissolved by ammonia to form the poly(MMA‐MAA)/poly(MAA‐NIPAAm) thermosensitive semi‐hollow latex particles. The morphologies of the semi‐hollow latex particles show that there is a hollow zone between the linear poly(MMA‐MAA) core and the crosslinked poly(MAA‐NIPAAm) shell. The crosslinking agent and shell composition significantly influenced the lower critical solution temperature of poly(MMA‐MAA)/poly(MAA‐NIPAAm) semi‐hollow latex particles. Besides, the poly(MMA‐MAA)/poly(MAA‐NIPAAm) thermosensitive semi‐hollow latex particles were used as carriers to load with the model drug, caffeine. The processes of caffeine loaded into the semi‐hollow latex particles appeared four situations, which was different from that of solid latex particles. In addition, the phenomenon of caffeine released from the semi‐hollow latex particles was obviously different from that of solid latex particles. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3441–3451  相似文献   

7.
Self‐assembled thermo‐ and pH‐responsive poly(acrylic acid)‐b‐poly(N‐isopropylacrylamide) (PAA‐b‐PNIPAM) micelles for entrapment and release of doxorubicin (DOX) was described. Block copolymer PAA‐b‐PNIPAM associated into core‐shell micelles in aqueous solution with collapsed PNIPAM block or protonated PAA block as the core on changing temperature or pH. Complexation of DOX with PAA‐b‐PNIPAM triggered by the electrostatic interaction and release of DOX from the complexes due to the changing of pH or temperature were studied. Complex micelles incorporated with DOX exhibited pH‐responsive and thermoresponsive drug release profile. The release of DOX from micelles was suppressed at pH 7.2 and accelerated at pH 4.0 due to the protonation of carboxyl groups. Furthermore, the cumulative release of DOX from complex micelles was enhanced around LCST ascribed to the structure deformation of the micelles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5028–5035, 2008  相似文献   

8.
To achieve deep tumor penetration of large‐sized nanoparticles (NPs), we have developed a reversible swelling–shrinking nanogel in response to pH variation for a sequential intra‐intercellular NP delivery. The nanogel had a crosslinked polyelectrolyte core, consisting of N‐lysinal‐N′‐succinyl chitosan and poly(N‐isopropylacrylamide), and a crosslinked bovine serum albumin shell, which was able to swell in an acidic environment and shrink back under neutral conditions. The swelling resulted in a rapid release of the encapsulated chemotherapeutics in the cancer cells for efficient cytotoxicity. After being liberated from the dead cells, the contractive nanogel could infect neighboring cancer cells closer to the center of the tumor tissue.  相似文献   

9.
In this work, the poly(methacrylic acid‐coN‐isopropylacrylamide) thermosensitive composite hollow latex particles was synthesized by a three‐step reaction. The first step was to synthesize the poly(methyl methacrylate‐co‐methacrylic acid) (poly(MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. The second step was to polymerize methacrylic acid (MAA), N‐isopropylacrylamide (NIPAAm), and N,N′‐methylenebisacrylamide in the presence of poly(MMA‐MAA) latex particles to form the linear poly(methyl methacrylate‐co‐methacrylic acid)/crosslinking poly(methacrylic acid‐coN‐isopropylacrylamide) (poly(MMA‐MAA)/poly(MAA‐NIPAAm)) core–shell latex particles. In the third step, the core–shell latex particles were heated in the presence of ammonia solution to form the crosslinking poly(MAA‐NIPAAm) thermosensitive hollow latex particles. The morphologies of poly(MMA‐MAA)/poly(MAA‐NIPAAm) core–shell latex particles and poly(MAA‐NIPAAm) hollow latex particles were observed. The influences of crosslinking agent and shell composition on the lower critical solution temperature of poly(MMA‐MAA)/poly(MAA‐NIPAAm) core–shell latex particles and poly(MAA‐NIPAAm) hollow latex particles were, respectively, studied. Besides, the poly(MAA‐NIPAAm) thermosensitive hollow latex particles were used as carriers to load with the model drug, caffeine. The effect of various variables on the amount of caffeine loading and the efficiency of caffeine release was investigated. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5203–5214  相似文献   

10.

Ammonium persulfate (APS), 2,2′‐azobis(amidinopropane) dihydrochloride (V50) and 4,4′‐azobis(4‐cyanovaleric acid) (ACVA) were utilized to prepare temperature‐sensitive poly(N‐isopropylacrylamide) (PNIPAM) microgels by precipitation polymerization under various reaction pH conditions. Their particle sizes and swelling ratios depended on the reaction pH due to the pH dependence on the ionization degree of the decomposed fragments originating from the initiators and their hydrophilicity‐hydrophobicity. The more hydrophobic initiator, under the reaction pH conditions used, could be partitioned to a greater extent into the microgel particles due to the hydrophobicity of PNIPAM chains at the reaction temperature, which led to a more cross‐linked structure inside the microgels resulting in their smaller swelling ratio. pH dependence of surface charge density of the microgels with amidino groups or carboxylic acid groups on their surfaces was evidenced by the variation of their zeta potentials as a function of pH.  相似文献   

11.
In this research, stimuli‐responsive porous/hollow nanoparticles were prepared by the self‐assembly method. First, chitosan‐graft‐poly(N‐isopropylacrylamide) (CS‐g‐PNIPAAm) copolymers were synthesized through polymerization of N‐isopropylacrylamide (NIPAAm) monomer in the presence of chitosan (CS) solution using ceric ammounium nitrate as the initiator. Then, the CS‐g‐PNIPAAm copolymers were dissolved in the acetic acid aqueous solution and heated to 40 °C to induce their self‐assembly. After CS‐g‐PNIPAAm assembled to form micelles, a cross‐linking agent was used to reinforce the structure to form nanoparticles. The molecular weight of grafted PNIPAAm on CS chains was changed to investigate its effect on the structure, morphology, thermo‐, and pH‐responsive properties of the nanoparticles. TEM images showed that a porous or hollow structure in the interior of nanoparticles was developed, depending on the medium temperature. The synthesized nanoparticles carried positive charges on the surface and exhibited stimuli‐responsive properties, and their mean diameter thus could be manipulated by changing the pH value and temperature of the environment. The nanoparticles showed a continuous release of the encapsulated doxycycline hyclate up to 10 days during an in vitro release experiment. These porous/hollow particles with environmentally sensitive properties are expected to be used in hydrophilic drug delivery system. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2377–2387, 2010  相似文献   

12.
A series of well‐defined double hydrophilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) backbone and poly(2‐vinylpyridine) side chains, were synthesized by successive single‐electron‐transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was prepared by sequential SET‐LRP of N‐isopropylacrylamide and 2‐hydroxyethyl acrylate at 25 °C using CuCl/tris(2‐(dimethylamino)ethyl)amine as the catalytic system. The obtained diblock copolymer was transformed into the macroinitiator by reacting with 2‐chloropropionyl chloride. Next, grafting‐from strategy was used for the synthesis of poly(N‐isopropylacrylamide)‐b‐[poly(ethyl acrylate)‐g‐poly(2‐vinylpyridine)] double hydrophilic graft copolymer. ATRP of 2‐vinylpyridine was initiated by the macroinitiator at 25 °C using CuCl/hexamethyldiethylenetriamine as the catalytic system. The synthesis of both the backbone and the side chains are controllable. Thermo‐ and pH‐responsive schizophrenic micellization behaviors were investigated by 1H NMR, fluorescence spectroscopy, dynamic light scattering, and transmission electron microscopy. Unimolecular micelles with PNIPAM‐core formed in acidic environment (pH = 2) with elevated temperature (T ≥ 32 °C), whereas the aggregates turned into spheres with PEA‐g‐P2VP‐core accompanied with the lifting of pH values (pH ≥ 5.3) at room temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 15–23, 2010  相似文献   

13.
Hydrogels responsive to both temperature and pH have been synthesized in the forms of sequential interpenetrating networks (IPNs) of N‐isopropylacrylamide (NIPAAm) and sodium acrylate (SA) and compared with the crosslinked random copolymers of N‐isopropylacrylamide and SA. Whereas the stimuli‐sensitive behaviors of copolymer hydrogels were strongly dependent on the ionic SA contents, the IPN hydrogels exhibited independent swelling and thermal behaviors of each network component. The sequences and media in the synthesis of IPNs influenced the swelling capacities of the IPNs, but not the temperature or pH ranges at which the swelling changes occurred. In IPNs, a more expanded primary gel network during the synthesis of the secondary network contributed to the better swelling of the final IPNs. Both the swelling and thermal behaviors of the IPNs suggest that poly(N‐isopropylacrylamide) and poly(sodium acrylate) are phase separated regardless of their synthesis conditions. The presence of the poly(sodium acrylate) network did not influence the temperature or the extent of phase transition of the poly(N‐isopropylacrylamide) network in the IPNs, but did improve the thermal stability of the IPNs. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3293–3301, 2004  相似文献   

14.
Poly(N‐isopropylacrylamide) (PNIPAAm) gels are temperature‐responsive polymer gels; and were prepared by redox polymerization of N‐isopropylacrylamide in the presence of N,N′‐methylenebisacrylamide as a crosslinking reagent and core‐shell type bioconjugates, which were core‐crosslinked polyion complex micelles formed from the mixture of bovine pancreas trypsin and poly(ethylene glycol)‐block‐poly(α,β‐aspartic acid). The phase transition temperature of PNIPAAm gels was no change with physically immobilization of bioconjugates. Also, the enzymatic activity of bioconjugates was essentially maintained even in PNIPAAm gels, although enzymatic reaction rate was apparently controlled by temperature, i.e., by the degree of swelling of PNIPAAm gels. Further, the control of enzymatic reaction synchronizing the phase transition of PNIPAAm gels immobilized bioconjugates. PNIPAAm gels could immobilize core‐shell type bioconjugates, and were successfully prepared without interfering with the properties of temperature‐responsive polymer gels and the bionanoreactor. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5942–5948, 2007  相似文献   

15.
The electrically conductive polypyrrole/dodecylbenzene sulfonic acid/poly(N‐isopropylacrylamide‐co‐acrylic acid) (PPy/DBSA/poly(NIPAAm‐co‐AA)) composite microgels were synthesized by a chemical oxidation of pyrrole in the presence of DBSA as the primary dopant, and poly(NIPAAm‐co‐AA) microgels as the polymeric codopant and template, in which APS was used as the oxidant. It was proposed to prepare “intelligent” polymer microgel particles containing both thermosensitive and electrically conducting properties. The polymerization of pyrrole took place directly inside the microgel networks, leading to formation of composite microgels and the morphology was observed by transmission electron microscope. PPy particles interacted strongly with microgels, as the acid groups of microgels acted as the polymeric codopant. The composite microgels thus formed showed electrically conducting behavior dependent on humidity and temperature. At temperatures lower than lower critical solution temperature, the conductivity decreased with increasing the humidity and a small hysteresis phenomenon was observed. The hysteresis became indistinct when temperature was near volume phase transition temperature. However, after the treatment of high temperature and high humidity, the conductivity increased surprisingly due to the structure reorganization inside the composite microgels. The distinctive functionality of the PPy composite microgels was expected to be utilized in many attractive applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1648–1659, 2006  相似文献   

16.
Multicompartmental responsive microstructures with the capability for the pre‐programmed sequential release of multiple target molecules of opposite solubility (hydrophobic and hydrophilic) in a controlled manner have been fabricated. Star block copolymers with dual‐responsive blocks (temperature for poly(N‐isopropylacrylamide) chains and pH for poly(acrylic acid) and poly(2‐vinylpyridine) arms) and unimolecular micellar structures serve as nanocarriers for hydrophobic molecules in the microcapsule shell. The interior of the microcapsule can be loaded with water‐soluble hydrophilic macromolecules. For these dual‐loaded microcapsules, a programmable and sequential release of hydrophobic and hydrophilic molecules from the shell and core, respectively, can be triggered independently by temperature and pH variations. These stimuli affect the hydrophobicity and chain conformation of the star block copolymers to initiate out‐of‐shell release (elevated temperature), or change the overall star conformation and interlayer interactions to trigger increased permeability of the shell and out‐of‐core release (pH). Reversing stimulus order completely alters the release process.  相似文献   

17.
In this study, the poly(N‐isopropylacrylamide‐methylacrylate acid)/Fe3O4/poly(N‐isopropylacrylamide‐methylacrylate acid) (poly(NIPAAm‐MAA)/Fe3O4/poly(NIPAAm‐MAA)) two‐shell magnetic composite hollow latex particles were synthesized by four steps. The poly(methyl methacrylate‐co‐methylacrylate acid) (poly(MMA‐MAA)) copolymer latex particles were synthesized first. Then, the second step was to polymerize NIPAAm, MAA, and crosslinking agent in the presence of poly(MMA‐MAA) latex particles to form the linear poly(MMA‐MAA)/crosslinking poly(NIPAAm‐MAA) core–shell latex particles. Then, the core–shell latex particles were heated in the presence of NH4OH to dissolve the linear poly(MMA‐MAA) core to form the poly(NIPAAm‐MAA) hollow latex particles. In the third step, the Fe3O4 nanoparticles were generated in the presence of poly(NIPAAm‐MAA) hollow polymer latex particles and formed the poly(NIPAAm‐MAA)/Fe3O4 magnetic composite hollow latex particles. The fourth step was to synthesize poly(NIPAAm‐MAA) in the presence of poly(NIPAAm‐MAA)/Fe3O4 latex particles to form the poly(NIPAAm‐MAA)/Fe3O4/poly(NIPAAm‐MAA) two‐shell magnetic composite hollow latex particles. The effect of various variables such as reactant concentration, monomer ratio, and pH value on the morphology and volume‐phase transition temperature of two‐shell magnetic composite hollow latex particles was studied. Moreover, the latex particles were used as carriers to load with caffeine, and the caffeine‐loading characteristics and caffeine release rate of latex particles were also studied. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2880–2891  相似文献   

18.
In this work, poly(N‐isopropylacrylamide‐co‐acrylic acid) (poly(NIPAAm‐AA)) copolymer latex particles (microgels) were synthesized by the method of soapless emulsion polymerization. Poly(NIPAAm‐AA) copolymer microgels have the property of being thermosensitive. The concentration of acrylic acid (AA) and crosslinking agent N,N′‐methylenebisacrylamide were important factors to influence the lower critical solution temperature (LCST) of poly(NIPAAm‐AA) microgels. The effects of AA and crosslinking agent on the swelling behavior of poly(NIPAAm‐AA) microgels were also studied. The poly(NIPAAm‐AA) copolymer microgels were then used as a thermosensitive drug carrier to load caffeine. The effects of concentration of AA and crosslinking agent on the control release of caffeine were investigated. How the AA content and crosslinking agent influenced the morphology and LCST of the microgels was discussed in detail. The relationship of morphology, swelling, and control release behavior of these thermosensitive microgels was established. A new scheme was proposed to interpret the control release of the microgels with different morphological structures. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5734–5741, 2008  相似文献   

19.
A reversible addition‐fragmentation chain transfer (RAFT) agent was directly anchored onto Fe3O4 nanoparticles in a simple procedure using a ligand exchange reaction of S‐1‐dodecyl‐S′‐(α,α′‐dimethyl‐α″‐acetic acid)trithiocarbonate with oleic acid initially present on the surface of pristine Fe3O4 nanoparticles. The RAFT agent‐functionalized Fe3O4 nanoparticles were then used for the surface‐initiated RAFT copolymerization of N‐isopropylacrylamide and acrolein to fabricate structurally well‐defined hybrid nanoparticles with reactive and thermoresponsive poly(N‐isopropylacrylamide‐co‐acrolein) shell and magnetic Fe3O4 core. Evidence of a well‐controlled surface‐initiated RAFT copolymerization was gained from a linear increase of number‐average molecular weight with overall monomer conversions and relatively narrow molecular weight distributions of the copolymers grown from the nanoparticles. The resulting novel magnetic, reactive, and thermoresponsive core‐shell nanoparticles exhibited temperature‐trigged magnetic separation behavior and high ability to immobilize model protein BSA. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 542–550, 2010  相似文献   

20.
We report the synthesis and gradient stimuli‐responsive properties of cyclodextrin‐overhanging hyperbranched core‐double‐shell miktoarm architectures. A ionic hyperbranched poly(β‐cyclodextrin) (β‐CD) core was firstly synthesized via a convenient “A2+B3” approach. Double‐layered shell architectures, composed of poly(N‐isopropyl acrylamide) (PNIPAm) and poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) miktoarms as the outermost shell linked to poly(N,N‐diethylaminoethyl methacrylate) (PDEAEMA) homoarms which form the inner shell, were obtained by a sequential atom transfer radical polymerization (ATRP) and parallel click chemistry from the modified hyperbranched poly(β‐CD) macroinitiator. The combined characterization by 1H NMR, 13C NMR, 1H‐29Si heteronuclear multiple‐bond correlation (HMBC), FTIR and size exclusion chromatography/multiangle laser light scattering (SEC/MALLS) confirms the remarkable hyperbranched poly(β‐CD) core and double‐shell miktoarm architectures. The gradient triple‐stimuli‐responsive properties of hyperbranched core‐double‐shell miktoarm architectures and the corresponding mechanisms were investigated by UV–vis spectrophotometer and dynamic light scattering (DLS). Results show that this polymer possesses three‐stage phase transition behaviors. The first‐stage phase transition comes from the deprotonation of PDEAEMA segments at pH 9–10 aqueous solution under room temperature. The confined coil‐globule conformation transition of PNIPAm and PDMAEMA arms gives rise to the second‐stage hysteretic cophase transition between 38 and 44 °C at pH 10. The third‐stage phase transition occurs above 44 °C at pH = 10 attributed to the confined secondary conformation transition of partial PDMAEMA segments. This cyclodextrin‐overhanging hyperbranched core‐double‐shell miktoarm architectures are expected to solve the problems of inadequate functionalities from core layer and lacking multiresponsiveness for shell layers existing in the dendritic core‐multishell architectures. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号