首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding protein self-assembly is important for many biological and industrial processes. Proteins can self-assemble into crystals, filaments, gels, and other amorphous aggregates. The final forms include virus capsids and condensed phases associated with diseases such as amyloid fibrils. Although seemingly different, these assemblies all originate from fundamental protein interactions and are driven by similar thermodynamic and kinetic factors. Here we review recent advances in understanding protein self-assembly through a soft condensed matter perspective with an emphasis on three specific systems: globular proteins, viruses, and amyloid fibrils. We conclude with a discussion of unanswered questions in the field.  相似文献   

2.
The capsid protein (CA) of human immunodeficiency virus 1 (HIV-1) assembles into a cone-like structure that encloses the viral RNA genome. Interestingly, significant heterogeneity in shape and organization of capsids can be observed in mature HIV-1 virions. In vitro, CA also exhibits structural polymorphism and can assemble into various morphologies, such as cones, tubes, and spheres. Many intermolecular contacts that are critical for CA assembly are formed by its C-terminal domain (CTD), a dimerization domain, which was found to adopt different orientations in several X-ray and NMR structures of the CTD dimer and full-length CA proteins. Tyr145 (Y145), residue two in our CTD construct used for NMR structure determination, but not present in the crystallographic constructs, was found to be crucial for infectivity and engaged in numerous interactions at the CTD dimer interface. Here we investigate the origin of CA structural plasticity using solid-state NMR and solution NMR spectroscopy. In the solid state, the hinge region connecting the NTD and CTD is flexible on the millisecond time scale, as evidenced by the backbone motions of Y145 in CA conical assemblies and in two CTD constructs (137-231 and 142-231), allowing the protein to access multiple conformations essential for pleimorphic capsid assemblies. In solution, the CTD dimer exists as two major conformers, whose relative populations differ for the different CTD constructs. In the longer CTD (144-231) construct that contains the hinge region between the NTD and CTD, the populations of the two conformers are likely determined by the protonation state of the E175 side chain that is located at the dimer interface and within hydrogen-bonding distance of the W184 side chain on the other monomer. At pH 6.5, the major conformer exhibits the same dimer interface as full-length CA. In the short CTD (150-231) construct, no pH-dependent conformational shift is observed. These findings suggest that the presence of structural plasticity at the CTD dimer interface permits pleiotropic HIV-1 capsid assembly, resulting in varied capsid morphologies.  相似文献   

3.
While lipids form soft, fluidic membranes (soft assembly), proteins can readily assemble into rigid, crystalline structures such as viral capsids and bacterial compartments (lattice assembly). The key difference has to do with the driving forces, where the former is driven by the weak, directionless hydrophobic effect and the latter, by a combination of relatively strong, directional intermolecular interactions. In synthetic systems, the lipid assembly has been massively replicated but the protein assembly has been rarely rivaled. Herein, we briefly review these two kinds of assemblies with special emphasis on a recently reported lattice self-assembly system of cyclodextrin complexes. The complexes arrange themselves into an in-plane, rhombic lattice that develops into lamellar, tubular, and polygonal structures depending on concentration. We will then cover the formation mechanisms, driving forces, and an application of the tubes in particle encapsulation. We hope that this short review would draw people's attention to this emerging field of lattice self-assembly.  相似文献   

4.
Many biological active proteins are assembled in protein complexes. Understanding the (dis)assembly of such complexes is therefore of major interest. Here we use mass spectrometry to monitor the disassembly induced by thermal activation of the heptameric co-chaperonins GroES and gp31. We use native electrospray ionization mass spectrometry (ESI-MS) on a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer to monitor the stoichiometry of the chaperonins. A thermally controlled electrospray setup was employed to analyze conformational and stoichiometric changes of the chaperonins at varying temperature. The native ESI-MS data agreed well with data obtained from fluorescence spectroscopy as the measured thermal dissociation temperatures of the complexes were in good agreement. Furthermore, we observed that thermal denaturing of GroES and gp31 proceeds via intermediate steps of all oligomeric forms, with no evidence of a transiently stable unfolded heptamer. We also evaluated the thermal dissociation of the chaperonins in the gas phase using infrared multiphoton dissociation (IRMPD) for thermal activation. Using gas-phase activation the smaller (2-4) oligomers were not detected, only down to the pentamer, whereafter the complex seemed to dissociate completely. These results demonstrate clearly that conformational changes of GroES and gp31 due to heating in solution and in the gas phase are significantly different.  相似文献   

5.
飞行时间质谱仪(TOFMS)在理论上无质量范围的限制,可实现大分子蛋白质与核酸的非共价复合物的直接检测.特别是在近中性溶液条件下通过对芥子酸和6-氮杂-2-硫代胸腺嘧啶基质的使用及双层样品制备方法的改善,获得了稳定复合物的高灵敏度质谱检测.肌红蛋白-血红素复合物能够在芥子酸基质的不同pH条件下(pH2.0或pH5.0)同时观察到.而运用双层样品制备方法,获得了核糖核酸酶复合物(RNaseS)在第一次激光照射下的突出质谱峰,但其丰度均随更多的激光打击而减弱.  相似文献   

6.
Protein cage architectures such as viral capsids, heat shock proteins, ferritins, and DNA-binding proteins are nanoscale modular subunits that can be used to expand the structural and functional range of composite materials. Here, layer-by-layer (LbL) assembly was used to incorporate cowpea chlorotic mottle virus (CCMV) into multilayer films. Three types of multilayer films were prepared. In the first type, ionic interactions were employed to assemble CCMV into triple layers. In the second type, complementary biological interactions (streptavidin/biotin) were used for this purpose. In a third variation of LbL assembly, complementary biological interactions were employed to produce nanotextured films that exhibit in-plane order over a micron scale without the need to adsorb onto a prepatterned template.  相似文献   

7.
We have demonstrated the construction of multiple porphyrin arrays in the tobacco mosaic virus (TMV) supramolecular structures by self-assembly of recombinant TMV coat protein (TMVCP) monomers, in which Zn-coordinated porphyrin (ZnP) and free-base porphyrin (FbP) were site-selectively incorporated. The photophysical properties of porphyrin moieties incorporated in the TMV assemblies were also characterized. TMV-porphyrin conjugates employed as building blocks self-assembled into unique disk and rod structures under the proper conditions as similar to native TMV assemblies. The mixture of a ZnP donor and an FbP acceptor was packed in the TMV assembly and showed energy transfer and light-harvesting activity. The detailed photophysical properties of the arrayed porphyrins in the TMV assemblies were examined by time-resolved fluorescence spectroscopy, and the energy transfer rates were determined to be 3.1-6.4x10(9) s(-1). The results indicate that the porphyrins are placed at the expected positions in the TMV assemblies.  相似文献   

8.
The ability to tune the inter‐subunit interaction within the virus capsid may be critical to assembly and biological function. This process was extended here with peptide/DNA co‐assembled viral mimics. The resulting co‐assemblies, formed and stabilized by both peptide nanofibril–DNA and peptide nanofibril–nanofibril interactions, were tuned through hydrophobic packing interactions of the peptide sequences. By strengthening peptide side‐chain complementarity and/or elongating the peptide chain (from 4 to 8 residues), we report strengthening the inter‐nanofibril interaction to create stable nanococoons that give high gene‐transfection efficacy.  相似文献   

9.
Binding of multiple proteins to DNA is crucial in many regulatory cellular processes. The kinetics of assembly and disassembly of DNA–multiple protein complexes is very difficult to study in detail due to the lack of suitable experimental approaches. A separation-based approach has been recently proposed to resolve disassembly kinetics of such complexes. While conceptually simple, the separation-based approach generates experimental data with very complex patterns. The analysis of these patterns is a challenging problem on its own. Here we report on a mathematical approach that can extract a solution for the experimental data obtained in separation-based analysis of sequential dissociation of a DNA complex with multiple proteins. This case describes the dissociation of proteins one-by-one from the complex. Generally speaking, a mathematical solution of such problems requires calculations of multiple integrals. Our approach reduces this procedure to taking double integrals and constructing their superposition. We tested this approach with the experimental data obtained for three-step sequential dissociation of complexes of DNA with two protein copies.  相似文献   

10.
Because self-assembly of matrix proteins is a key step in hard tissue mineralization, developing an understanding of the assembly pathways and underlying mechanisms is likely to be important for successful hard tissue engineering. While many studies of matrix protein assembly have been performed on bulk solutions, in vivo these proteins are likely to be in contact with charged biological surfaces composed of lipids, proteins, or minerals. Here we report the results of an in situ atomic force microscopy (AFM) study of self-assembly by amelogenin--the principal protein of the extracellular matrix in developing enamel--in contact with two different charged substrates: hydrophilic negatively charged bare mica and positively charged 3-aminopropyl triethoxysilane (APS) silanized mica. First we demonstrate an AFM-based protocol for determining the size of both amelogenin monomers and oligomers. Using this protocol, we find that, although amelogenin exists primarily as ~26 nm in diameter nanospheres in bulk solution at a pH of 8.0 studied by dynamic light scattering, it behaves dramatically differently upon interacting with charged substrates at the same pH and exhibits complex substrate-dependent assembly pathways and dynamics. On positively charged APS-treated mica surfaces, amelogenin forms a relatively uniform population of decameric oligomers, which then transform into two main populations: higher-order assemblies of oligomers and amelogenin monomers, while on negatively charged bare mica surfaces, it forms a film of monomers that exhibits tip-induced desorption and patterning. The present study represents a successful attempt to identify the size of amelogenin oligomers and to directly monitor assembly and disassembly dynamics on surfaces. The findings have implications for amelogenin-controlled calcium phosphate mineralization in vitro and may offer new insights into in vivo self-assembly of matrix proteins as well as their control over hard tissue formation.  相似文献   

11.
Functional materials composed of proteins have attracted much interest owing to the inherent and diverse functionality of proteins. However, establishing general techniques for assembling proteins into nanomaterials is challenging owing to the complex physicochemical nature and potential denaturation of proteins. Here, a simple, versatile strategy is introduced to fabricate functional protein assemblies through the interfacial assembly of proteins and polyphenols (e.g., tannic acid) on various substrates (organic, inorganic, and biological). The dominant interactions (hydrogen‐bonding, hydrophobic, and ionic) between the proteins and tannic acid were elucidated; most proteins undergo multiple noncovalent stabilizing interactions with polyphenols, which can be used to engineer responsiveness into the assemblies. The proteins retain their structure and function within the assemblies, thereby enabling their use in various applications (e.g., catalysis, fluorescence imaging, and cell targeting).  相似文献   

12.
Functional materials composed of proteins have attracted much interest owing to the inherent and diverse functionality of proteins. However, establishing general techniques for assembling proteins into nanomaterials is challenging owing to the complex physicochemical nature and potential denaturation of proteins. Here, a simple, versatile strategy is introduced to fabricate functional protein assemblies through the interfacial assembly of proteins and polyphenols (e.g., tannic acid) on various substrates (organic, inorganic, and biological). The dominant interactions (hydrogen-bonding, hydrophobic, and ionic) between the proteins and tannic acid were elucidated; most proteins undergo multiple noncovalent stabilizing interactions with polyphenols, which can be used to engineer responsiveness into the assemblies. The proteins retain their structure and function within the assemblies, thereby enabling their use in various applications (e.g., catalysis, fluorescence imaging, and cell targeting).  相似文献   

13.
In living cells, chemical reactions of metabolism, information processing, growth and development are organized in a complex network of interactions. At least in part, the organization of this network is accomplished as a result of physical assembly by supramolecular scaffolds. Indeed, most proteins function in cells within the context of multimeric or supramolecular assemblies. With the increasing availability of atomic structures and molecular thermodynamics, it is possible to recast the problem of non-covalent molecular self-assembly from a unified perspective of structural thermodynamics and kinetics. Here, we present a generalized theory of self-assembly based on Wegner's kinetic model and use it to delineate three physical mechanisms of self-assembly: as limited by association of assembly units (nucleation), by association of monomers (isodesmic), and by conformational reorganization of monomers that is coupled to assembly (conformational). Thus, we discuss actin, tubulin, clathrin, and the capsid of icosahedral cowpea chlorotic mottle virus with respect to assembly of architectural scaffolds that perform largely mechanical functions, and pyruvate dehydrogenase, and RING domain proteins PML, arenaviral Z, and BRCA1:BARD1 with regard to assembly of supramolecular enzymes with metabolic and chemically directive functions. In addition to the biological functions made possible by supramolecular self-assembly, such as mesoscale mechanics of architectural scaffolds and metabolic coupling of supramolecular enzymes, we show that the physical mechanisms of self-assembly and their structural bases are biologically significant as well, having regulatory roles in both formation and function of the assembled structures in health and disease.  相似文献   

14.
The understanding of the detailed molecular interactions between (GSH) glutathione molecules in the assembly of metal nanoparticles is important for the exploitation of the biological reactivity. We report herein results of an investigation of the assembly of gold nanoparticles mediated by glutathione and the disassembly under controlled conditions. The interparticle interactions and reactivities were characterized by monitoring the evolution of the surface plasmon resonance band using the spectrophotometric method and the hydrodynamic sizes of the nanoparticle assemblies using the dynamic light scattering technique. The interparticle reactivity of glutathiones adsorbed on gold nanoparticles depends on the particle sizes and the ionic strength of the solution. Larger-sized particles were found to exhibit a higher degree of interparticle assembly than smaller-sized particles. The assembly-disassembly reversibility is shown to be highly dependent on pH and additives in the solution. The interactions of the negatively charged citrates surrounding the GSH monolayer on the particle surface were believed to produce more effective interparticle spatial and electrostatic isolation than the case of OH (-) groups surrounding the GSH monolayer. The results have provided new insights into the hydrogen-bonding character of the interparticle molecular interaction of glutathiones bound on gold nanoparticles. The fact that the interparticle hydrogen-bonding interactions in the assembly and disassembly processes can be finely tuned by pH and chemical means has implications to the exploitation of the glutathione-nanoparticle system in biological detection and biosensors.  相似文献   

15.
Noncovalent binding of DNA with multiple proteins is pivotal to many regulatory cellular processes. Due to the lack of experimental approaches, the kinetics of assembly and disassembly of DNA-multiple proteins complexes have never been studied. Here, we report on a first method capable of measuring disassembly kinetics of such complexes. The method is based on continuous spatial separation of different complexes. The kinetics of multiple complex dissociation processes are also spatially separated, which in turn facilitates finding their rate constants. Our separation-based approach was compared with a conventional no-separation approach by using computer simulation of dissociation kinetics. It proved to be much more accurate than the no-separation approach and to be a powerful tool for testing hypothetical mechanisms of the disassembly of DNA-multiple proteins complexes. An experimental implementation of the separation-based approach was finally demonstrated by using capillary electrophoresis as a separation method. The interaction between an 80 nucleotide long single-stranded DNA and single-stranded DNA binding protein was studied. DNA-protein complexes with one and two proteins were observed, and rate constants of their dissociation were determined. We foresee that a separation approach will be also developed to study the kinetics of the formation of DNA-multiple protein complexes.  相似文献   

16.
Liquid crystals have a long history of use as materials that respond to external stimuli (e.g., electrical and optical fields). More recently, a series of investigations have reported the design of liquid crystalline materials that undergo ordering transitions in response to a range of biological interactions, including interactions involving proteins, nucleic acids, viruses, bacteria and mammalian cells. A central challenge underlying the design of liquid crystalline materials for such applications is the tailoring of the interface of the materials so as to couple targeted biological interactions to ordering transitions. This review describes recent progress toward design of interfaces of liquid crystalline materials that are suitable for biological applications. Approaches addressed in this review include the use of lipid assemblies, polymeric membranes containing oligopeptides, cationic surfactant-DNA complexes, peptide-amphiphiles, interfacial protein assemblies and multi-layer polymeric films.  相似文献   

17.
Characterization of hepatitis B virus capsids by resistive-pulse sensing   总被引:1,自引:0,他引:1  
We report characterization of hepatitis B virus (HBV) capsids by resistive-pulse sensing through single track-etched conical nanopores formed in poly(ethylene terephthalate) membranes. The pores were ~40 nm in diameter at the tip, and the pore surface was covalently modified with triethylene glycol to reduce surface charge density, minimize adsorption of the virus capsids, and suppress electroosmotic flow in the pore. The HBV capsids were assembled in vitro from Cp149, the assembly domain of HBV capsid protein. Assembled T = 3 (90 Cp149 dimer) and T = 4 (120 dimer) capsids are 31 and 36 nm in diameter, respectively, and were easily discriminated by monitoring the change in current as capsids passed through an electrically biased pore. The ratio of the number of T = 3 to T = 4 capsids transiting a pore did not reflect actual concentrations, but favored transport of smaller T = 3 capsids. These results combined with longer transit times for the T = 4 capsids indicated that the capsids must overcome an entropic barrier to enter a pore.  相似文献   

18.
《Comptes Rendus Chimie》2003,6(8-10):755-766
Transition metal complexes encompass a large and exceptional pool of building blocks with diverse stereochemical, electrochemical and photophysical features. This mini-account presents efforts to advance the organic chemistry of coordination compounds, where functionalized complexes are viewed as synthetic building blocks. Selective synthetic transformations, conducted on the periphery of coordinatively saturated metal complexes, are shown to facilitate the fabrication of sophisticated complexes, multimetallic arrays, and metal-containing biopolymers. In addition, the utilization of novel phenanthrolines as tunable fluorophores, as well as for the assembly of hyperbranched structures and sensory oligonucleotides, is described.  相似文献   

19.
Whether for constructing advanced materials and complex biological devices or for building sophisticated coordination complexes with diverse metal-based functions, proteins are nature's favorite building blocks. Yet, our ability to control the assembly of proteins or to use them as ligand platforms for inorganic chemistry has been somewhat limited. In this review, we highlight our work from the past four years, which has aimed to exploit the utility of a protein scaffold in both regards. First, by considering proteins as “simple” ligand platforms and controlling the metal coordination chemistry on their surfaces, we show how their self-assembly can be readily dictated by metal binding. Second, we show how metal-mediated protein self-assembly leads to novel metal centers buried within protein interfaces. While on one hand our studies have pointed out the challenges of using proteins as ligands, they have also revealed how the extensive, chemically-rich protein surfaces can be exploited to form a network of covalent and non-covalent interactions around interfacial metal centers, providing a powerful handle to control their coordination chemistry.  相似文献   

20.
Cellular functions, either under the normal or pathological conditions or under different stresses, are the results of the coordinated action of multiple proteins interacting in macromolecular complexes or assemblies. The precise determination of the specific composition of protein complexes, especially using scalable and high-throughput methods, represents a systematic approach toward revealing particular cellular biological functions. In this regard, the direct profiling protein-protein interactions (PPIs...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号