首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of super absorbent polymer (SAP) on the early hydration evolution of Portland cement within 72 h were investigated by isothermal calorimetry, thermal analysis and X-ray diffraction analysis. The results show that the SAP definitely affects the early hydration process of Portland cement, increases the hydration heat evolution rate during the acceleration period and during the main exothermic peak, promotes the earlier appearance of the main exothermic peak, but does not affect the lengths of the initial reaction period and the induction period and the onset of the acceleration period. The SAP can accelerate cement hydration to increase the hydration degree within 72 h. But the dosage variation of SAP has minor influence on the hydration heat evolution and hydration degree. The SAP enhances the formation of Ca(OH)2 after 12 h to keep higher content than that in the reference paste. The SAP does not affect the maximum content of ettringite, but delays the conversion of ettringite to monosulphate to remain ettringite content higher at later hydration time. Besides, no new phases are found to have formed in cement paste with SAP.  相似文献   

2.
In this article, the water-soluble aminosulfonate–phenol–salicylic acid–formaldehyde (AH) polymer and aminosulfonate–phenol–formaldehyde polymer (AS) were incorporated into cement paste, and the effect of AH polymer on cement hydration and microstructure of cement paste was compared with AS polymer by means of isothermal calorimetry, X-ray diffraction, thermal analysis, mercury intrusion porosimetry, and scanning electron microscopy. The test results showed that the incorporation of AH and AS polymers into cement paste retards the rate of hydration reaction and reduces the amount of hydration products at early stages of hydration. The use of AH and AS polymers into cement paste also improves pore structure of cement paste. The pore size distribution of cement paste shifts toward smaller pore size scope. A smaller particle size of hydration product can be found in cement paste with AH and AS polymers. The cement paste with AH and AS polymers has a higher pore volume and total porosity. The surface morphologies of cement paste with AH and AS polymers are looser and more homogeneous than blank cement paste. Moreover, at the same dosage of polymer, the effect of AH polymer on the cement hydration and microstructure of cement paste was more significant than that of AS polymer.  相似文献   

3.
This paper investigates the influence of mechanical grinding on pozzolanic characteristics of circulating fluidized bed fly ash (CFA) from the dissolution characteristics, paste strength, hydration heat and reaction degree. Further, the hydration and hardening properties of blended cement containing different ground CFA are also compared and analyzed from hydration heat, non-evaporable water content, hydration products, pore structure, setting time and mortar strength. The results show that the ground CFA has a relatively higher dissolution rate of Al2O3 and SiO2 under the alkaline environment compared with that of raw CFA, and the pozzolanic reaction activity of ground CFA is gradually improved with the increase of grinding time. At the grinding time of 60 min, the pozzolanic reaction degree of CFA paste is improved from 6.32% (raw CFA) to 13.71% at 7 days and from 13.65 to 28.44% at 28 days, respectively. The relationships of pozzolanic reaction degree and grinding time of CFA also conform to a quadratic function. For ground CFA after a long-time grinding such as 60 min, the hydration heat and non-evaporable water content of blended cement containing CFA are significantly improved. Owing to relatively smaller particle size and higher activity of ground CFA, the blended cement paste has more hydration products, narrower pore size distribution and lower porosity. For macroscopic properties, with increase in grinding time of CFA, the setting time and strength of blended cement are gradually shortened and improved, respectively.  相似文献   

4.

Present research compared the effect of chromate reducers such as ferrous sulphate heptahydrate (FeSO4·7H2O) and stannous sulphate dihydrate (SnCl2·2H2O) on the hydration of cement paste, using water?cement ratio of 0.5 and sealed in plastic bags without curing for 28 days. Uncured hydration properties of cement paste are investigated in detail by thermogravimetric analysis (TGA) and verified with the use of scanning electron microscopy (SEM) and X-ray powder diffractometry (XRD). This research concluded that the cement paste with 0.1% additives showed better hydration in the uncured condition than the control.

  相似文献   

5.
We experimentally studied the catalytic performances of a series of Br?nsted-Lewis acidic N-methyl-2-pyrrolidonium metal chlorides([Hnmp]Cl/MCl_x, where M=Fe, Zn, Al, or Cu) for the hydrolysis of microcrystalline cellulose(MCC) and cotton to produce reducing sugar. A variety of factors, such as temperature, time, ionic liquid(IL) species, IL dosage, and the concentration of the metal chloride were investigated. [Hnmp]Cl/FeCl_3 presented the best hydrolysis performance, affording a 98.8% yield of total reducing sugar from MCC(1 h, 100 °C, 0.1 g MCC, 0.2 g acidic IL, 2.0 g [Bmim]Cl as solvent), which is better than or comparable to results previously obtained with other –SO_3H functionalized acidic ILs. The hydrolysis performances of [Hnmp]Cl/MClx were rationalized using density functional theory calculations, which indicated that interactions between the metal chlorides and the cellulose, including charge-transfer interactions are important in the hydrolysis of cellulose and degradation of glucose. This work shows that Br?nsted-Lewis acidic ILs are potential catalysts for the hydrolysis of cellulose to produce sugar.  相似文献   

6.
Pozzolanic cement blends were prepared by the partial substitution of ordinary Portland cement (OPC) with different percentages of burnt clay (BC), Libyan clay fired at 700 °C, of 10, 20, and 30%. The pastes were made using an initial water/solid ratio of 0.30 by mass of each cement blend and hydrated for 1, 3, 7, 28, and 90 days. The pozzolanic OPC–BC blend containing 30% BC was also admixed with 2.5 and 5% silica fume (SF) to improve the physicomechanical characteristics. The hardened pozzolanic cement pastes were subjected to compressive strength and hydration kinetics tests. The results of compressive strength indicated slightly higher values for the paste made of OPC–BC blend containing 10% BC The results of DSC and XRD studies indicated the formation and later the stabilization of calcium silicates hydrates (CSH) and calcium aluminosilicate hydrates (C3ASH4 and C2ASH8) as the main hydration products in addition to free calcium hydroxide (CH). Scanning electron microscopic (SEM) examination revealed that the pozzolanic cement pastes made of OPC–BC mixes possesses a denser structure than that of the neat OPC paste. Furthermore, the addition of SF resulted in a further densification of the microstructure of the hardened OPC–BC–SF pastes; this was reflected on the observed improvement in the compressive strength values at all ages of hydration.  相似文献   

7.
This research provides a fundamental understanding of the early stage hydration of Portland cement paste, tricalcium aluminate (C3A) paste at water to cement ratio of 0.5 and C3A suspension at water to cement ratio of 5.0 modified by 2 or 4 mass% of sodium carbonate. A high conversion of unreacted clinker minerals to gel-like hydration products in the cement-Na2CO3 pastes takes place rapidly between 1st to 24th h. Contrary the Ca(OH)2 formation within the same time interval is retarded in the excess of CO32− ions due to intensive rise and growth of CaCO3 crystals in hydrated cement. Later, the conversion of clinker minerals to the hydrate phase is reduced and higher contents of calcite and vaterite relative to that of Ca(OH)2 in comparison with those found in the Portland cement paste are observed. As a consequence a decrease in strength and an increase in porosity between hardened Portland cement paste without sodium carbonate and those modified by Na2CO3 are observed. C3A hydrates very quickly with sodium carbonate between 1st and 24th h forming hydration products rich in bound water and characterized also by complex salts of (x)C3A·(y)CO2·(zH2O type, whereas C3A-H2O system offers C3AH6 as the main hydration product. Higher content of the formed calcium aluminate hydrates in C3A-Na2CO3-H2O system also contributes to early strength increase of Portland cement paste.  相似文献   

8.
We present a time evolution of 1H spin-lattice relaxation rates in the laboratory (1/T1) and in the rotating (1/T) frame of a synthetic cement paste. The typical results found for both rates allow us to follow the main hydration stages of the cement paste and the refinement of its microporosity. In particular the texturation of the porosity and the structuration of the surface of the material are evidenced on two model cement pastes. An interpretation in terms of fractal size distribution is considered as well as the effect of the curing temperature.  相似文献   

9.
The design of green fiber-reinforced nanocomposites with enhanced properties and durability has attracted attention from scientists. The present study aims to investigate the potential of bacterial nanocellulose (BNC) as a green additive for fiber–cement composites. Inverse gas chromatography (IGC) was used to evaluate the influence of incorporation of BNC as powder or gel, or coated onto the bagasse fibers, on the fiber–cement composite (FCC) surface. The results indicated that BNC incorporation made the FCC surface more reactive, increasing the dispersive component of the surface energy. The most relevant effects were found for BNC incorporation as gel or coated on the fibers. Incorporation of BNC as gel resulted in a predominantly organic FCC surface with substantial decreased surface basicity (K a/K b ratio from 2.88 to 5.75). IGC also showed that FCC with BNC incorporated as gel was more susceptible to hydration. However, BNC coated on fibers prevented fiber mineralization, increasing the inorganic materials at the surface, which caused an increase in the surface basicity (K a/K b ratio decrease to 2.00). These promising results could contribute to development of a new generation of green hybrid composites. The IGC technique enabled understanding of the physicochemical changes that occur on deliberate introduction of nanosized bacterial cellulose into fiber–cement composites.  相似文献   

10.
Titanium dioxide (TiO2) is an excellent photocatalytic material that imparts biocidal, self-cleaning and smog-abating functionalities when added to cement-based materials. The presence of TiO2 influences the hydration process of cement and the development of its internal structure. In this article, the hydration process and development of a pore network of cement pastes containing different ratios of TiO2 were studied using two noninvasive techniques (ultrasonic and NMR). Ultrasonic results show that the addition of TiO2 enhances the mechanical properties of cement paste during early-age hydration, while an opposite behavior is observed at later hydration stages. Calorimetry and NMR spin–lattice relaxation time T1 results indicated an enhancement of the early hydration reaction. Two pore size distributions were identified to evolve separately from each other during hydration: small gel pores exhibiting short T1 values and large capillary pores with long T1 values. During early hydration times, TiO2 is shown to accelerate the formation of cement gel and reduce capillary porosity. At late hydration times, TiO2 appears to hamper hydration, presumably by hindering the transfer of water molecules to access unhydrated cement grains. The percolation thresholds were calculated from both NMR and ultrasonic data with a good agreement between both results.  相似文献   

11.
The paper describes an attempt of chemical activation of fly ash and claims the usefulness of combination of such investigation methods as calorimetry and infrared absorption for investigations of early periods of cement hydration. The research samples were cement pastes made with an addition of fly ash and admixtures of chemical activators, CaCl2, Na2SO4 and NaOH, whereas a cement paste without fly ash addition and a cement-fly ash paste (both without admixtures) were used as reference samples. In order to investigate early periods of cement pastes hydration, the amount and rate of heat release were registered, and IR spectrums were checked at appointed hydration moments. As a result, it was shown that the combination of calorimetric and IR absorption methods in the investigations of early periods of cement hydration was useful. It was confirmed that the use of chemical activators CaCl2, Na2SO4 and NaOH accelerated the hydration of cement pastes containing fly ash additive in early hours after adding water. The action of activators on hydrating cement system is different for each of investigated compounds.  相似文献   

12.
Cellulose ethers (CE) are introduced in almost all cement-based dry mortars in order to retain water in mortar mass avoiding losing it too quickly by substrate absorption or water evaporation. In this way the workability of the fresh material, the adherence to the substrate and internal-strength characteristics of mortar, render or tile adhesive are improved. One of the side effects of cellulose ethers is the Portland cement hydration delaying. The influence of six commercial cellulose ethers, hydroxyethylmethyl cellulose (HEMC) type, on the hydration of Portland cement CEM I 42.5 R, was followed by thermal analysis (TG and DTA curves). Three of these cellulose ethers are unmodified, and have different viscosities, while three of them have the same viscosity but differ in the degree of modification (unmodified, one with medium modification and one with high modification). The interest of dry mortars producers for the effects of these cellulose ethers, is generated by the wide offer available on the market and by the absence of systematic data on the effect of different viscosities and degrees of modification on dry mortars properties. In order to quantify the effect of the CE on the cement hydration, the surface area of the endothermic effect corresponding to the dehydration of portlandite (Ca(OH)2), formed after 1, 3, and 7 days of hydration, was defined. It was noted that the proportion of Ca(OH)2 in samples containing CE after 1 day was 30–40 % lower than in reference sample. After 3 and 7 days of hydration the proportion of Ca(OH)2 in samples containing CE approaches that of reference sample (10–20 % less). For the same period of hydration, the different viscosity, and different degree of modification of cellulose ethers cause variations in narrow limits of the proportion of Ca(OH)2, and the degree of cement hydration, respectively.  相似文献   

13.
The hydration products of 2.5, 5 and 10% Cl containing metakaolin (MK)-lime pastes are compared with the same obtained from MK-lime paste to understand the chloride binding behaviour of MK during the hydration of cement. Results indicate that 2.5% Cl addition into the MK-lime paste initially enhances the formation of Friedel's salt (Ca2Al(OH)6Cl·2H2O), but Friedel's salt decomposes at later stages due to the formation of stratlingite (C2ASH8). In 5 and 10% chloride containing pastes, Friedel's salt is observed throughout the reaction periods along with the high amount of CSH. Small amount of stratlingite is also formed on or after 60 day hydration of 5% Cl containing MK-lime pastes. On the other hand, MK-lime-10% Cl containing pastes show the complete absence of stratlingite and C4AH13 through out the hydration period, which are the major hydration products of MK-lime paste. Mesuarements of pH of the simulated pore fliuds help to understand the decomposition behaviour of Friedel's salt. From the experimental results, chloride binding mechanism of MK-lime paste is also discussed.  相似文献   

14.
The objects of the paper are the results of the study on the compatibility of copper refining waste with cement system. The study based on the use of thermal analysis and the comparison of its results with further applied methods (tests of setting, compressive strength and pore analysis) showed good compatibility of the waste up to 20% dose opposite to the cement. It seems that the waste action in cement paste with the Ca(OH)2 binding, produced in the cement process hydration, is connected.  相似文献   

15.

Phosphoaluminate cement (PAC) clinker had good mechanical properties at early and long-term period. In comparison, the compressive strength of PAC clinker modified by BaO was more prominent. As primary mineral phase for PAC clinker, CA’s mineralogical structure and hydration characteristics were intimately related to the compressive strength of hardened cement paste. In this study, the effects of BaO content on the calcination, mineralogical structure and hydration characteristics of CA were investigated. Experimental results showed that the appropriate calcination temperature of CA was 1400 °C. No more than 11% (the substitution ratio of BaO for CaO) addition of BaO can promote the conversion of C12A7 to CA and increase the formation ratio of CA. Appropriate content of 7 mol% BaO could endow the hardened paste with excellent compressive strength. In CA mineral phase the high limit addition of BaO was 15 mol%. The addition of BaO decreased and even restrained the formation of C2AH8 and C3AH6 of CA hydration products and also improved the content of CAH10. The addition of BaO dramatically decreased the hydration velocity and cumulative heat of CA mineral.

  相似文献   

16.
A recently developed synchrotron-based imaging technique, X-ray diffraction microtomography (XRD-CT), has been applied here for the first time to a complex system, the hydrating Portland cement paste, in order to monitor the evolution of microstructure and phase formation with a 3D non-invasive imaging approach. The ettringite-XRD-peak-based image reconstructions, combined with transmission microtomography (X-μCT) images, allowed to assess the ubiquitous distribution of this phase, which appears early in the hydration process and showed its preferential concentration in the relatively less compact regions of the paste. The comparison of greyscale histograms for cement pastes after 9 and 58 h from hydration showed an increase of ettringite content with age, in agreement with the quantitative Rietveld analysis of the sum patterns. By renormalizing the greyscale histograms to the relative weight fraction, as obtained from Rietveld refinements, a new technique which allows estimation of phase contents with spatial resolution has been developed. The results achievable by combining XRD-CT, X-μCT and Rietveld appear very promising to provide experimental snapshots of the cement hydration process to be compared with results obtained from computer simulations.
Figure
Experimental set-up of X-ray diffraction microtomography  相似文献   

17.
Although the literature presents intensive studies based on monitoring cement hydration in adiabatic and semi-adiabatic environments, such as non-conventional differential thermal analysis (NCDTA) systems, studies of cement hydration in controlled climatic chambers are very rare. Using three W/C ratios (0.5, 0.6 and 0.7) and three relative humidity conditions (60, 80 and 100%) at 25 °C, the authors analyzed in real time the evolution of cement hydration reaction during the first 24 h in an environmental-controlled chamber. The main objective of this paper is to present two new developed systems of NCDTA (NNCDTA) and non-conventional TG and to show, using high-strength sulfate-resistant Portland cement pastes in a controlled chamber as application examples, how the developed systems measure on real time the thermal effects and the mass changes that occur during hydration and carbonation reactions. The captured CO2 mass can be quantified as it occurs by carbonation curves. The results are in agreement with the mechanical and structural properties of the used pastes and with their TG/DTG data, after being processed by different operational conditions. Carbonation for 24 h alters significantly the cement hydrated paste composition, resulting in final poor mechanical resistance properties. However, carbonation for 1 h, in specific conditions, enhances them when compared to a non-carbonated reference paste, due to a final higher content of silica and alumina hydrated phases and to a lower mass ratio between that of their combined water and their total mass as well.  相似文献   

18.
The structure and resultant mechanical properties of fibers in the dry-jet wet spinning process of cellulose solutions in N-methylmorpholine-N-oxide (NMMO) hydrates were investigated in terms of molecular weight of cellulose, concentration, and hydration number (n) of NMMO hydrate. The value of n had an effect on the crystallization behavior of the cellulose solution system, which influenced the resultant fiber structure. Increasing cellulose concentration and decreasing the value of n retarded crystallization because of the increased interactions between cellulose and NMMO hydrate. Reducing the value of n from 1 to 0.72 produced more highly oriented cellulose fibers. However, incorporating n-propyl gallate, an antioxidant, had little effect on the fiber structure. When n=0.72 a double crystallization behavior was observed in the fiber spinning process irrespective of molecular weight of cellulose and concentration over the experimental ranges examined. It should be noted that such a double crystallization took place in the absence of foreign additives. The double crystallization behavior was more noticeable when the aspect ratio of spinning nozzle was greater. The double layer structure had a positive effect on the mechanical strength.  相似文献   

19.
Main hydration products of two cement pastes, i.e. CSH-gel, portlandite (P) (and specific surface S) were studied by static heating, and by SEM, TEM and XRD, as a function of cement strength (C-33 and C-43) hydration time (th) and subsequent hydration in water vapour.Total change in mass on hydration and air drying, Mo, increased with strength of cement paste and with hydration time. Content of water escaping at 110 to 220°C, defined as water bound with low energy, mainly interlayer and hydrate water, was independent on cement strength but its content increased with (th). Content of chemically bound (zeolitic) water in CSH-gel, escaping at 220-400°C, was slightly dependent on strength and increased with (th). It was possibly derived from the dehydroxylation of CSH-gel and AFm phase. Portlandite water, escaping at 400-500°C, was independent on cement strength and was higher on longer hydration. Large P crystals were formed in the weaker cement paste C-33. Smaller crystals were formed in C-43 but they increased with (th). Carbonate formated on contact with air (calcite, vaterite and aragonite), decomposed in cement at 600-700oC. It was high in pastes C-33(1 month) and C-43(1 month), i.e. 5.7 and 3.3%, respectively; it was less than 1% after 6 hydration months (low sensitivity to carbonation) in agreement with the XRD study showing carbonates in the air dry paste (1month), and its absence on prolonged hydration (6 months) and on acetone treatment. Water vapour treatment of (6 months) pastes or wetting-drying increased this sensitivity.Nanosized P-crystals, detected by TEM, could contribute to the cement strength; carbonate was observed on the rims of gel clusters.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

20.
The capture of CO2 and SO2 from industrial gas effluents has been done usually by lime-containing products. For this purpose, cement pastes also can be used, due mainly to their calcium hydroxide content formed during hydration. To select the best cement for this purpose, TG and DTG curves of different Portland cement pastes (types I, II, III and G), prepared with a water-to-cement ratio (W/C) equal to 0.5, were analyzed at different ages, at same operating conditions. The curves were transformed into respective cement calcined and initial mass basis, to have a common and same composition reference basis, for a correct quantitative hydration data comparison. This procedure also shows that there is an unavoidable partial drying effect of the pastes before starting their analysis, which randomly decreases the W/C ratio at which were prepared, which indicates that, when results are compared on respective paste initial mass basis, assuming that the ratio W/C has not changed, possible calculation errors may be done. Type I, II and G analyzed cements have shown similar hydration characteristics as a function of time, while the analyzed type III cement has shown a different hydration behavior, mainly due to its highest Al2O3 and lowest SO3 contents, promoting the formation of hydrated calcium aluminates, by the pozzolanic action of the excess of alumina, consuming Ca(OH)2, which final content at 28 days was the lowest one, among the hydrated cements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号