首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 542 毫秒
1.
We propose a technique for analyzing the distribution function of the velocity components (radial V r and azimuthal V φ) of ions in a beam. This technique is used for studying the ion beam emerging from a stationary plasma thruster (SPT). It is shown that the beam contains ions with a radial velocity component in the range V r /V z = ? 1.2 to +0.74, as well as ions with the azimuthal velocity component in the range V ?/V z = ±0.9. Numerical calculations lead to the conclusion that ions acquire the azimuthal velocity component in the field of the azimuthal wave of the plasma potential evolving in the SPT channel.  相似文献   

2.
PurposeTo investigate velocity encoded and velocity compensated variants of multi-spoke RF pulses that can be used for flip-angle homogenization at ultra-high fields (UHF). Attention is paid to the velocity encoding for each individual spoke pulse and to displacement artifacts that arise in Fourier transform imaging in the presence of flow.Theory and methodsA gradient waveform design for multi-spoke excitation providing an algorithm for minimal TE was proposed that allows two different encodings. Such schemes were compared to an encoding approach that applies an established scheme to multi-spoke excitations. The impact on image quality and quantitative velocity maps was evaluated in phantoms using single- and two-spoke excitations. Additional validation measurements were obtained in-vivo at 7 T.ResultsPhantom experiments showed that keeping the first gradient moment constant for all k-space lines eliminates any displacements in phase-encoding and slice-selection direction for all spoke pulses but leads to artifacts for non-zero velocity components along readout direction. Introducing variable but well-defined first gradient moments in the phase-encoding direction creates displacements along the velocity vector and thus minimizes velocity-induced geometrical distortions. Phase-resolved mean volume flow in the ascending and descending aorta obtained from two-spoke excitation showed excellent agreement with single-spoke excitation over the cardiac cycle (mean difference 0.8 ± 16.2 ml/s).ConclusionsThe use of single- and multi-spoke RF pulses for flow quantification at 7 T with controlled displacement artifacts has been successfully demonstrated. The presented techniques form the basis for correct velocity quantification and compensation not only for conventional but also for multi-spoke RF pulses allowing in-plane B1+ homogenization using parallel transmission at UHF.  相似文献   

3.
This experimental study elucidates the unsteady dynamics of flame-flow interactions during unique thermoacoustic instability (TI) and the transition mechanism from stable combustion to TI for lean-premixed hydrogen turbulent jet flames in a low-swirl combustor (LSC), where a swirler assembly consists of an unswirled central region (CR) and an annular swirler region (SR). Simultaneous 200-kHz pressure fluctuation p’ measurements and 10-kHz OH* chemiluminescence imaging, as well as 40-kHz stereoscopic particle image velocimetry (SPIV) and two-dimensional PIV measurements for steady-state and transient data acquisitions, respectively, were conducted. The SPIV was performed in multiple planes to explore three-dimensional velocity fields. During TI, periodic flashback was possibly caused by significant axial velocity oscillations, resulting in the local mixture velocity falling below the turbulent flame speed. The large-scale vortex ring generated by the velocity oscillations caused axisymmetric radial velocity Vr oscillations with switching signs during the TI period. Similar to a typical low-swirl flow, the positive Vr away from the combustor axis created diverging flow, whereas unlike the typical flowfield, the negative Vr toward the combustor axis generated converging flow while flattening the axial velocity distributions, which was the signature phenomenon for this TI. Using the transient data and dynamic mode decomposition, variations in delay times between the mixture injection and its convection to a region with positive local Rayleigh indices were investigated. During stable combustion, the mixture jet from the SR predominantly induced thermoacoustic coupling (TC). As the combustion transitioned into the TI, the mixture jet from the CR began to induce TC and, eventually, achieved predominance in inducing TC during fully evolved TI. The transition from the SR jet- into CR jet-dominant TI arising from the dynamic flame-flow interactions resulted from the inherent physical characteristics of hydrogen flames, thereby yielding the larger p’ amplitude compared to typical TIs.  相似文献   

4.
《Nuclear Physics A》1987,468(2):193-236
The real part V(r); E) of the nucleon-nucleus mean field is assumed to have a Woods-Saxon shape, and accordingly to be fully specified by three quantities: the potential depth Uv(E), radius RV(E) and diffuseness av(E). At a given nucleon energy E these parameters can be determined from three different radial moments [rq]v = (4π/A) ∝V(r; E)rq dr. This is useful because a dispersion relation approach has recently been developed for extrapolating [rq]V(E) from positive to negative energy, using as inputs the radial moments of the real and imaginary parts of empirical optical-model potentials V(r; E) + iW(r; E). In the present work, the values of Uv(E), Rv(E) and av(E) are calculated in the case of neutrons in 208Pb in the energy domain −20 < E < 40 MeV from the values of [rq]V(E) for q = 0.8, 2 and 4. It is found that both UV(E) and Rv(E) have a characteristic energy dependence. The energy dependence of the diffuseness aa(E) is less reliably predicted by the method. The radius RV(E) increases when E decreases from 40 to 5 MeV. This behaviour is in agreement with empirical evidence. In the energy domain −10 MeV < E < 0, RV(E) is predicted to decrease with decreasing energy. The energy dependence of the root mean square radius is similar to that of RV(E). The potential depth Uv slightly increases when E decreases from 40 to 15 MeV and slightly decreases between 10 and 5 MeV; it is consequently approximately constant in the energy domain 5 < E < 20 MeV, in keeping with empirical evidence. The depth Uv increases linearly with decreasing E in the domain −10 MeV < E < 0. These features are shown to persist when one modifies the detailed input of the calculation, namely the empirical values of [rq]v(E) for E > 0 and the parametrization [rq]w(E) of the energy dependence of the radial moments of the imaginary part of the empirical optical-model potentials. In the energy domain −10 MeV < E < 0, the calculated V(r; E) yields good agreement with the experimental single-particle energies; the model thus accurately predicts the shell-model potential (E < 0) from the extrapolation of the optical-model potential (E > 0). In the dispersion relation approach, the real part V(r; E) is the sum of a Hartree-Fock type contribution VHF(r; E) and of a dispersive contribution ΔV(r; E). The latter is due to the excitation of the 208Pb core. The dispersion relation approach enables the calculation of the radial moment [rq]ΔV(E) from the parametrization [rq]w(E): several schematic models are considered which yield algebraic expressions for [rq]ΔV(E). The radial moments [rq]HF(E) are approximated by linear functions of E. When in addition, it is assumed that VHF(r; E) has a Woods-Saxon radial shape, the energy dependence of its potential parameters (UHF, RHF, aHF) can be calculated. Furthermore, the values of ΔV(r; E) can then be derived. It turns out that ΔV(r; E) is peaked at the nuclear surface near the Fermi energy and acquires a Woods-Saxon type shape when the energy increases, in keeping with previous qualitative estimates. It is responsible for the peculiar energy dependence of RV(E) in the vicinity of the Fermi energy.  相似文献   

5.
We prove that in a two-body, non-relativistic system interacting via a potential V = ?g2/r + Vc(r), where Vc is a confining potential non-singular at the origin, the 2S level is above the 2P level if Vc satisfies the following sufficient condition: This covers the well-known cases of linear potentials or harmonic oscillator potentials, which were considered in charmonium models, but also more generally, for instance, Vc(r) = rα, α >0.  相似文献   

6.
A method is proposed for the calculation of one-electron wave functions for excited bound and free atomic states. For the interaction potential between the outer electron and the atomic core, we have adopted the following potential: V(r) = q0/r for r < r0 and V(r) = -1/r for r > r0, where r0 is approximately equal to the core radius, q0(∈, 1) = Δq + 1, and Δq > 0 is the inner charge defect. It is shown, for atomic argon, that the method has about the same accuracy as those of Bates and Damgard and Brugess and Seaton.  相似文献   

7.
We propose an approximation Va(r) for the Van der Waals interaction V(r) between an atom and a non-planar solid. Va(r) is both simpler to compute than V(r) and of considerably more convenient form. The approximation is found to be quite good except for very large z (the atom-surface separation). In the latter case, our comparison of Va and V permits one to estimate corrections to Va.  相似文献   

8.
From magnetization measurements on some amorphous dilute La80?xGdxAu20 alloys with x ? 1 we have shown that the magnetic behavior follows the scaling laws of a spin-glass system, characteristic of the 1/r3 dependence of the pairwise interaction. We have also determined the strength of the Ruderman-Kittel-Kasuya-Yosida interaction V(r) = (V0cos 2kFr)/r3, to be V0 = 0.20 × 10?37 ergcm3. The corresponding value of the s-f exchange integral is |Jsf| = 0.14 eV, which is compared with values determined from other experiments.  相似文献   

9.
A portable nuclear magnetic resonance (NMR) sensor with an adjustable ‘clamp’ structure is constructed for the noninvasive measurement of the aging status of silicone rubber insulators used in the high-voltage power transmission. The Carr–Purcell–Meiboom–Gill sequence was employed to record the 1H NMR transverse relaxation curves of silicone rubber insulators with different service times. The decay curves were fitted to mono-exponential and bi-exponential functions. Further data processing of the decay curves was performed with the inverse Laplace transformation for one-dimensional T 2 distribution analysis, focusing on the mean lifetime of the long T 2 component (T 2long mean). The results demonstrate that an increase in the aging level of the insulator clearly results in a decrease of T 2long mean. For comparison, the relative permittivity of the insulator was also measured. It shows the same trend as that of T 2long mean. This indicates that the T 2long mean relaxation time obtained from our portable NMR sensor can reliably be used as an index to reflect the aging status of silicone rubber insulator.  相似文献   

10.
《Solid State Ionics》1987,23(3):183-188
The enthalpies of formation of seven hydrogen vanadium bronzes, HxV2O5(0<x⩽3.77), prepared at ambient temperature by “hydrogen spillover”, have been determined by solution calorimetry. The enthalpy values obtained for their formation from H2(g) and V2O5(s) at 298.15 K are (in kJ mol−1): H0.22V2O5, −1569.95 ± 1.75; H0.46V2O5, −1589.96 ± 1.69; H1.43V2O5, − 1670.53 ± 1.88; H1.87V2O5, −1700.56 ± 1.58; H2.79V2O5, −1744.23 ± 1.72; H3.53V2O5, −1772.98 ± 2.38; H3.77V2O5, −1781.10 ± 2.27. The stabilities of the compounds towards decomposition, disproportion and oxidation are discussed.  相似文献   

11.
Zn0.98−xCuxV0.02O (x=0, 0.01, 0.02 and 0.03) samples were synthesized by the sol–gel technology to dope up to 3% Cu in ZnO. Investigations of structural, optical and magnetic properties of the samples have been done. The results of X-ray diffraction (XRD), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) indicated that the V and Cu ions were incorporated into the crystal lattices of ZnO. With Cu doping concentration increasing up to 2 at%, the XRD results showed that all diffraction peaks corresponded to the wurtzite structure of ZnO. Photoluminescence (PL) measurements showed that Zn0.98−xCuxV0.02O powders exhibited that the position of the ultraviolet (UV) emission peak of the samples showed an obvious red-shift and the green emission peak enhanced significantly with Cu doping in ZnVO nanoparticle. Magnetic measurements indicated that room temperature ferromagnetism (RTFM) of Zn0.98−xCuxV0.02O was an intrinsic property when Cu concentration was less than 3 at%. The saturation magnetization (Ms) of Zn0.98−xCuxV0.02O (x=0, 0.01 and 0.02) increased with the increase of the Cu concentration.  相似文献   

12.
The valence band offset, ΔEV ,at the lattice-matched GaAs/AlAs(001) interface is derived from highly precise self- consistent all-electron local density band structure calculations of the (GaAs)n(AlAs)n(001) superlattices (with n ⩽ 3). Using the core levels as reference energies, we find that ΔEV = 0.50 ± 0.05 eV, in very good agreement with recent experimental results (ΔEV = 0.45 − 0.55 eV). The dependence of ΔEV on the superlattice thickness is studied and related to the interface charge redistribution which produces an interface dipole potential estimated to be ∼ 0.14 eV.  相似文献   

13.
R. Bass 《Physics letters. A》1973,46(3):189-190
Precise limitations on the choice of the reference potential for the ATA are investigated, and it is shown that V(i)r?〈Vi〉=O(xy).  相似文献   

14.
We investigate the influence of inflow velocity (Vin) and scalar dissipation rate (χ) on the flame structure and stabilisation mechanism of steady, laminar partially premixed n-dodecane edge flames stabilised on a convective mixing layer. Numerical simulations were performed for three different χ profiles and several Vin (Vin = 0.2 to 2.5m/s). The ambient thermochemical conditions were the same as the Engine Combustion Network’s (ECN) Spray A flame, which in turn represents conditions in a typical heavy duty diesel engine. The results of a combustion mode analysis of the simulations indicate that the flame structure and stabilisation mechanism depend on Vin and χ. For low Vin the flame is attached. Increasing Vin causes the high-temperature chemistry (HTC) flame to lift-off, while the low-temperature chemistry (LTC) flame is still attached. A unique speed SR associated with this transition is defined as the velocity at which the lifted height has the maximum sensitivity to changes in Vin. This transition velocity is negatively correlated with χ. Near Vin=SR a tetrabrachial flame structure is observed consisting of a triple flame, stabilised by flame propagation into the products of an upstream LTC branch. Further increasing the inlet velocity changes the flame structure to a pentabrachial one, where an additional HTC ignition branch is observed upstream of the triple flame and ignition begins to contribute to the flame stabilisation. At large Vin, the LTC is eventually lifted, and the speed at which this transition occurs is insensitive to χ. Further increasing Vin increases the contribution of ignition to flame stabilisation until the flame is completely ignition stabilised. Flow divergence caused by the LTC branch reduces the χ at the HTC branches making the HTC more resilient to χ. The results are discussed in the context of identification of possible stabilisation modes in turbulent flames.  相似文献   

15.
《Nuclear Physics B》1996,478(3):598-604
Stimulated by the study described in the preceding paper, we establish the asymptotic behaviour of the ratio h′(0)/h(0) for g → ∞, where h(r) is a solution, vanishing at infinity, of the differential equation h″(r) = igω(r)h(r) on the domain 0 ≤ r ≤ ∞ and ω(r) = (1 − √rK1(√r))/r. Some results are valid for more general ω's.  相似文献   

16.
We present a reinterpretation of our recent measurements of the magnetic properties of some dilute AuFe alloys. We find that the observed approach to saturation of the magnetization for these AuFe alloys can be understood if both single-impurity (Kondo) effects and effects due to interactions between impurities via the Rudeman-Kittel-Kasuya-Yosida (RKKY) interaction, V(r) = (V0 cos 2kFr)/r3, are properly included in the analysis. The analysis yields for the strength of the RKKY interaction V0 = (1.1 ± 0.3) × 10-36ergcm3, for the s-d exchange parameter |J| = (1.9 ± 0.3) eV, and for the Kondo temperature TK = (0.8 ± 0.1) K. We conclude that mean free path effects do not significantly influence the observed approach to saturation of the magnetization for the AuFe alloys studied.  相似文献   

17.
A simple graphic method is described for calculating the thermodynamic properties of U and other metals in a nonstoichiometric r-component (r ⩾ 3) uranium oxide U1-yM′y3My4… O2+x from the known oxygen potential. Only one set of graphic integration and (r − 2) sets of graphic differentiation are needed. Experimental data in an iso-x (r − 1)-component subsystem for which the oxygen potential is a linear function of yi(i = 3,4,…, r) may easily be used to give a more accurate integration constant for the calculation. Sample calculations have been done for the Ut-yGdyO2+x solid solutions. This method can also be applied to other nonstoichiometric multicomponent solid compounds of importance in nuclear technology such as thorium-based and plutonium-based fuels.  相似文献   

18.
S. N. Dolya 《Technical Physics》2014,59(11):1694-1697
Magnetic dipoles are accelerated by a running gradient of the magnetic field that is produced by sequentially energizing current-carrying turns. Magnetic dipoles d sh = 60 mm in diameter and l tot = 1 m in length are gasdynamically preaccelerated to velocity V in = 1 km/s, with which they are injected into the main accelerator. The turnover of the dipoles in the field of an accelerating pulse is prevented and focusing of dipoles is provided by directing the dipoles into a titanium tube. The weight of the dipoles is m = 2 kg, and they acquire final velocity V fin = 5 km/s over acceleration length L acc = 300 m.  相似文献   

19.
From measurements of the magnetic properties of some dilute AuFe alloys we find that V0, the strength of the Ruderman-Kittel-Kasuya-Yosida interaction, V(r) = (V0 cos 2kFr)/r3, decreases rapidly from V0 = 11.9 × 10-36 erg cm3 at n = 42 ppm Fe to 1.03 × 10-36 erg cm3 at 6050 ppm Fe. We suggest that the observed decrease of V0 is due to self-damping of the RKKY oscillations, and discuss the significance of this decrease for the interpretation of other experiments on AuFe.  相似文献   

20.
《Nuclear Physics A》1988,484(2):205-263
The real part V(r; E) of the p-40Ca and n-40Ca mean fields is extrapolated from positive towards negative energies by means of the iterative moment approach, which incorporates the dispersion relation between the real and imaginary parts of the mean field. The potential V(r; E) is the sum of a Hartree-Fock type component VHF, (r; E) and a dispersive correction δV(r; E); the latter is due to the coupling of the nucleon to excitations of the 40Ca core. The potentials V(r; E) and VHF(r; E) are assumed to have Woods-Saxon shapes. The calculations are first carried out in the framework of the original version of the iterative moment approach, in which both the depth and the radius of the Hartree-Fock type contribution depend upon energy, while its diffuseness is constant and equal to that of V(r; E). The corresponding extrapolation towards negative energies is somewhat sensitive to the detailed parametrization of the energy dependence of the imaginary part of the mean field, which is the main input of the calculation. Moreover, the radius of the calculated Hartree-Fock type potential then increases with energy, in contrast to previous findings in 208Pb and 89Y. A new version of the iterative moment approach is thus developed in which the radial shape of the Hartree-Fock type potential is independent of energy; the justification of this constraint is discussed. The diffuseness of the potential V(r; E) is assumed to be constant and equal to that of VHF(r; E). The potential calculated from this new version is in good agreement with the real part of phenomenological optical-model potentials and also yields good agreement with the single-particle energies in the two valence shells. Two types of energy dependence are considered for the depth UHF(E) of the Hartree-Fock type component, namely a linear and an exponential form. The linear approximation is more satisfactory for large negative energies (E < −30 MeV) while the exponential form is better for large positive energies (E > 50 MeV). This is explained by relating the energy dependence of UHF(E) to the nonlocality of the microscopic Hartree-Fock type component. Near the Fermi energy the effective mass presents a pronounced peak at the potential surface. This is due to the coupling to surface excitations of the core and reflects the energy dependence of the potential radius. The absolute spectroscopic factors of low-lying single-particle excitations in 39Ca, 41Ca, 39K and 41Sc are found to be close to 0.8. The calculated p-40Ca and n-40Ca potentials are strikingly similar, although the two calculations have been performed entirely independently. The two potentials can be related to one another by introducing a Coulomb energy shift. Attention is drawn to the fact that the extrapolated energy dependence of the real part of the mean field at large positive energy sensitively depends upon the assumed behaviour of the imaginary part at large negative energy. Yet another version of the iterative moment approach is introduced, in which the radial shape of the HF-type component is independent of energy while both the radius and the diffuseness of the full potential V(r; E) depend upon E. This model indicates that the accuracy of the available empirical data is probably not sufficient to draw reliable conclusions on the energy dependence of the diffuseness of V(r; E).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号