首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 874 毫秒
1.
This study investigated the in vitro inhibitory potential of different solvent extracts of leaves of Barbeya oleoides on key enzymes related to type 2 diabetes mellitus (α-glucosidase and α-amylase) in combination with an aggregation assay (using 0.01% Triton X-100 detergent) to assess the specificity of action. The methanol extract was the most active in inhibiting α-glucosidase and α-amylase, with IC50 values of 6.67 ± 0.30 and 25.62 ± 4.12 µg/mL, respectively. However, these activities were significantly attenuated in the presence of 0.01% Triton X-100. The chemical analysis of the methanol extract was conducted utilizing a dereplication approach combing LC-ESI-MS/MS and database searching. The chemical analysis detected 27 major peaks in the negative ion mode, and 24 phenolic compounds, predominantly tannins and flavonol glycosides derivatives, were tentatively identified. Our data indicate that the enzyme inhibitory activity was probably due to aggregation-based inhibition, perhaps linked to polyphenols.  相似文献   

2.
Red fruits and their juices are rich sources of polyphenols, especially anthocyanins. Some studies have shown that such polyphenols can inhibit enzymes of the carbohydrate metabolism, such as α-amylase and α-glucosidase, that indirectly regulate blood sugar levels. The presented study examined the in vitro inhibitory activity against α-amylase and α-glucosidase of various phenolic extracts prepared from direct juices, concentrates, and purees of nine different berries which differ in their anthocyanin and copigment profile. Generally, the extracts with the highest phenolic content—aronia (67.7 ± 3.2 g GAE/100 g; cyanidin 3-galactoside; chlorogenic acid), pomegranate (65.7 ± 7.9 g GAE/100 g; cyanidin 3,5-diglucoside; punicalin), and red grape (59.6 ± 2.5 g GAE/100 g; malvidin 3-glucoside; quercetin 3-glucuronide)—showed also one of the highest inhibitory activities against α-amylase (326.9 ± 75.8 μg/mL; 789.7 ± 220.9 μg/mL; 646.1 ± 81.8 μg/mL) and α-glucosidase (115.6 ± 32.5 μg/mL; 127.8 ± 20.1 μg/mL; 160.6 ± 68.4 μg/mL) and, partially, were even more potent inhibitors than acarbose (441 ± 30 μg/mL; 1439 ± 85 μg/mL). Additionally, the investigation of single anthocyanins and glycosylated flavonoids demonstrated a structure- and size-dependent inhibitory activity. In the future in vivo studies are envisaged.  相似文献   

3.
Diabetes mellitus (DM) is a chronic metabolic condition that can lead to significant complications and a high fatality rate worldwide. Efforts are ramping up to find and develop novel α-glucosidase and α-amylase inhibitors that are both effective and potentially safe. Traditional methodologies are being replaced with new techniques that are less complicated and less time demanding; yet, both the experimental and computational strategies are viable and complementary in drug discovery and development. As a result, this study was conducted to investigate the in vitro anti-diabetic potential of aqueous acetone Helichrysum petiolare and B.L Burtt extract (AAHPE) using a 2-NBDG, 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxy-d-glucose uptake assay. In addition, we performed molecular docking of the flavonoid constituents identified and quantified by liquid chromatography-mass spectrometry (LC-MS) from AAHPE with the potential to serve as effective and safe α-amylase and α-glucosidase inhibitors, which are important in drug discovery and development. The results showed that AAHPE is a potential inhibitor of both α-amylase and α-glucosidase, with IC50 values of 46.50 ± 6.17 (µg/mL) and 37.81 ± 5.15 (µg/mL), respectively. This is demonstrated by a significant increase in the glucose uptake activity percentage in a concentration-dependent manner compared to the control, with the highest AAHPE concentration of 75 µg/mL of glucose uptake activity being higher than metformin, a standard anti-diabetic drug, in the insulin-resistant HepG2 cell line. The molecular docking results displayed that the constituents strongly bind α-amylase and α-glucosidase while achieving better binding affinities that ranged from ΔG = −7.2 to −9.6 kcal/mol (compared with acarbose ΔG = −6.1 kcal/mol) for α-amylase, and ΔG = −7.3 to −9.0 kcal/mol (compared with acarbose ΔG = −6.3 kcal/mol) for α-glucosidase. This study revealed the potential use of the H. petiolare plant extract and its phytochemicals, which could be explored to develop potent and safe α-amylase and α-glucosidase inhibitors to treat postprandial glycemic levels in diabetic patients.  相似文献   

4.
Syzygium cumini (Pomposia) is a well-known aromatic plant belonging to the family Myrtaceae, and has been reported for its various traditional and pharmacological potentials, such as its antioxidant, antimicrobial, anti-inflammatory, and antidiarrheal properties. The chemical composition of the leaf essential oil via gas chromatography–mass spectrometry (GC/MS) analysis revealed the identification of fifty-three compounds representing about 91.22% of the total oil. The identified oil was predominated by α-pinene (21.09%), followed by β-(E)-ocimene (11.80%), D-limonene (8.08%), β-pinene (7.33%), and α-terpineol (5.38%). The tested oil revealed a moderate cytotoxic effect against human liver cancer cells (HepG2) with an IC50 value of 38.15 ± 2.09 µg/mL. In addition, it effectively inhibited acetylcholinesterase with an IC50 value of 32.9 ± 2.1 µg/mL. Furthermore, it showed inhibitory properties against α-amylase and α-glucosidase with IC50 values of 57.80 ± 3.30 and 274.03 ± 12.37 µg/mL, respectively. The molecular docking studies revealed that (E)-β-caryophyllene, one of the major compounds, achieved the best docking scores of −6.75, −5.61, and −7.75 for acetylcholinesterase, α-amylase, and α-glucosidase, respectively. Thus, it is concluded that S. cumini oil should be considered as a food supplement for the elderly to enhance memory performance and for diabetic patients to control blood glucose.  相似文献   

5.
The main objective of the current study was to determine the physicochemical properties, antioxidant activities, and α-glucosidase and α-amylase inhibition of apple vinegar produced by artisanal and industrial methods. Apple vinegar samples were analyzed to identify their electrical conductivity, pH, titratable acidity, total dry matter, Brix, density, mineral elements, polyphenols, flavonoids, and vitamin C. The antioxidant activity of apple vinegar samples was evaluated using two tests, total antioxidant capacity (TAC) and DPPH radical scavenging activity. Finally, we determined α-glucosidase and α-amylase inhibitory activities of artisanal and industrial apple vinegar. The results showed the following values: pH (3.69–3.19); electrical conductivity (2.81–2.79 mS/cm); titratable acidity (3.6–5.4); ash (4.61–2.90); °Brix (6.37–5.2); density (1.02476–1.02012), respectively, for artisanal apple vinegar and industrial apple vinegar. Concerning mineral elements, potassium was the most predominant element followed by sodium, magnesium, and calcium. Concerning bioactive compounds (polyphenols, flavonoids, and vitamin C), the apple vinegar produced by the artisanal method was the richest sample in terms of bioactive compounds and had the highest α-glucosidase and α-amylase inhibition. The findings of this study showed that the quality and biological activities of artisanal apple vinegar were more important than industrial apple vinegar.  相似文献   

6.
As a key enzyme regulating postprandial blood glucose, α-Glucosidase is considered to be an effective target for the treatment of diabetes mellitus. In this study, a simple, rapid, and effective method for enzyme inhibitors screening assay was established based on α-glucosidase catalyzes reactions in a personal glucose meter (PGM). α-glucosidase catalyzes the hydrolysis of maltose to produce glucose, which triggers the reduction of ferricyanide (K3[Fe(CN)6]) to ferrocyanide (K4[Fe(CN)6]) and generates the PGM detectable signals. When the α-glucosidase inhibitor (such as acarbose) is added, the yield of glucose and the readout of PGM decreased accordingly. This method can achieve the direct determination of α-glucosidase activity by the PGM as simple as the blood glucose tests. Under the optimal experimental conditions, the developed method was applied to evaluate the inhibitory activity of thirty-four small-molecule compounds and eighteen medicinal plants extracts on α-glucosidase. The results exhibit that lithospermic acid (52.5 ± 3.0%) and protocatechualdehyde (36.8 ± 2.8%) have higher inhibitory activity than that of positive control acarbose (31.5 ± 2.5%) at the same final concentration of 5.0 mM. Besides, the lemon extract has a good inhibitory effect on α-glucosidase with a percentage of inhibition of 43.3 ± 3.5%. Finally, the binding sites and modes of four active small-molecule compounds to α-glucosidase were investigated by molecular docking analysis. These results indicate that the PGM method is feasible to screening inhibitors from natural products with simple and rapid operations.  相似文献   

7.
Numerous scientific studies have confirmed the beneficial therapeutic effects of phenolic acids. Among them gentisic acid (GA), a phenolic acid extensively found in many fruit and vegetables has been associated with an enormous confirmed health benefit. The present study aims to evaluate the antidiabetic potential of gentisic acid and highlight its mechanisms of action following in silico and in vitro approaches. The in silico study was intended to predict the interaction of GA with eight different receptors highly involved in the management and complications of diabetes (dipeptidyl-peptidase 4 (DPP4), protein tyrosine phosphatase 1B (PTP1B), free fatty acid receptor 1 (FFAR1), aldose reductase (AldR), glycogen phosphorylase (GP), α-amylase, peroxisome proliferator-activated receptor gamma (PPAR-γ) and α-glucosidase), while the in vitro study studied the potential inhibitory effect of GA against α-amylase and α-glucosidase. The results indicate that GA interacted moderately with most of the receptors and had a moderate inhibitory activity during the in vitro tests. The study therefore encourages further in vivo studies to confirm the given results.  相似文献   

8.
Diabetes mellitus is a chronic disease and one of the fastest-growing health challenges of the last decades. Studies have shown that chronic low-grade inflammation and activation of the innate immune system are intimately involved in type 2 diabetes pathogenesis. Momordica charantia L. fruits are used in traditional medicine to manage diabetes. Herein, we report the purification of a new 23-O-β-d-allopyranosyl-5β,19-epoxycucurbitane-6,24-diene triterpene (charantoside XV, 6) along with 25ξ-isopropenylchole-5(6)-ene-3-O-β-d-glucopyranoside (1), karaviloside VI (2), karaviloside VIII (3), momordicoside L (4), momordicoside A (5) and kuguaglycoside C (7) from an Indian cultivar of Momordica charantia. At 50 µM compounds, 2–6 differentially affected the expression of pro-inflammatory markers IL-6, TNF-α, and iNOS, and mitochondrial marker COX-2. Compounds tested for the inhibition of α-amylase and α-glucosidase enzymes at 0.87 mM and 1.33 mM, respectively. Compounds showed similar α-amylase inhibitory activity than acarbose (0.13 mM) of control (68.0–76.6%). Karaviloside VIII (56.5%) was the most active compound in the α-glucosidase assay, followed by karaviloside VI (40.3%), while momordicoside L (23.7%), A (33.5%), and charantoside XV (23.9%) were the least active compounds. To better understand the mode of binding of cucurbitane-triterpenes to these enzymes, in silico docking of the isolated compounds was evaluated with α-amylase and α-glucosidase.  相似文献   

9.
α-glucosidase is a major enzyme that is involved in starch digestion and type 2 diabetes mellitus. In this study, the inhibition of hypericin by α-glucosidase and its mechanism were firstly investigated using enzyme kinetics analysis, real-time interaction analysis between hypericin and α-glucosidase by surface plasmon resonance (SPR), and molecular docking simulation. The results showed that hypericin was a high potential reversible and competitive α-glucosidase inhibitor, with a maximum half inhibitory concentration (IC50) of 4.66 ± 0.27 mg/L. The binding affinities of hypericin with α-glucosidase were assessed using an SPR detection system, which indicated that these were strong and fast, with balances dissociation constant (KD) values of 6.56 × 10−5 M and exhibited a slow dissociation reaction. Analysis by molecular docking further revealed that hydrophobic forces are generated by interactions between hypericin and amino acid residues Arg-315 and Tyr-316. In addition, hydrogen bonding occurred between hypericin and α-glucosidase amino acid residues Lys-156, Ser-157, Gly-160, Ser-240, His-280, Asp-242, and Asp-307. The structure and micro-environment of α-glucosidase enzymes were altered, which led to a decrease in α-glucosidase activity. This research identified that hypericin, an anthracene ketone compound, could be a novel α-glucosidase inhibitor and further applied to the development of potential anti-diabetic drugs.  相似文献   

10.
Anti-diabetic compounds from natural sources are now being preferred to prevent or treat diabetes due to adverse effects of synthetic drugs. The decoction of Muntingia calabura leaves was traditionally consumed for diabetes treatment. However, there has not been any published data currently available on the processing effects on this plant’s biological activity and phytochemical profile. Therefore, this study aims to evaluate the effect of three drying methods (freeze-drying (FD), air-drying (AD), and oven-drying (OD)) and ethanol:water ratios (0, 50, and 100%) on in vitro anti-diabetic activities of M. calabura leaves. In addition, an ultrahigh-performance-liquid chromatography–electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) method was used to characterize the metabolites in the active extract. The FD M. calabura leaves, extracted with 50% ethanol, is the most active extract that exhibits a high α-glucosidase and α-amylase inhibitory activities with IC50 values of 0.46 ± 0.05 and 26.39 ± 3.93 µg/mL, respectively. Sixty-one compounds were tentatively identified by using UHPLC-ESI-MS/MS from the most active extract. Quantitative analysis, by using UHPLC, revealed that geniposide, daidzein, quercitrin, 6-hydroxyflavanone, kaempferol, and formononetin were predominant compounds identified from the active extract. The results have laid down preliminary steps toward developing M. calabura leaves extract as a potential source of bioactive compounds for diabetic treatment.  相似文献   

11.
Inhibiting the intestinal α-glucosidase can effectively control postprandial hyperglycemia for type 2 diabetes mellitus (T2DM) treatment. In the present study, we reported the binding interaction of betulinic acid (BA), a pentacyclic triterpene widely distributed in nature, on α-glucosidase and its alleviation on postprandial hyperglycemia. BA was verified to exhibit a strong inhibitory effect against α-glucosidase with an IC50 value of 16.83 ± 1.16 μM. More importantly, it showed a synergistically inhibitory effect with acarbose. The underlying inhibitory mechanism was investigated by kinetics analysis, surface plasmon resonance (SPR) detection, molecular docking, molecular dynamics (MD) simulation and binding free energy calculation. BA showed a non-competitive inhibition on α-glucosidase. SPR revealed that it had a strong and fast affinity to α-glucosidase with an equilibrium dissociation constant (KD) value of 5.529 × 10−5 M and a slow dissociation. Molecular docking and MD simulation revealed that BA bound to the active site of α-glucosidase mainly due to the van der Waals force and hydrogen bond, and then changed the micro-environment and secondary structure of α-glucosidase. Free energy decomposition indicated amino acid residues such as PHE155, PHE175, HIE277, PHE298, GLU302, TRY311 and ASP347 of α-glucosidase at the binding pocket had strong interactions with BA, while LYS153, ARG210, ARG310, ARG354 and ARG437 showed a negative contribution to binding affinity between BA and α-glucosidase. Significantly, oral administration of BA alleviated the postprandial blood glucose fluctuations in mice. This work may provide new insights into the utilization of BA as a functional food and natural medicine for the control of postprandial hyperglycemia.  相似文献   

12.
Medicinal plants offer imperative sources of innovative chemical substances with important potential therapeutic effects. Among them, the members of the genus Inula have been widely used in traditional medicine for the treatment of several diseases. The present study investigated the antioxidant (DPPH, ABTS and FRAP assays) and the in vitro anti-hyperglycemic potential of aerial parts of Inula viscosa (L.) Aiton (I. viscosa) extracts through the inhibition of digestive enzymes (α-amylase and α-glucosidase), responsible of the digestion of poly and oligosaccharides. The polyphenolic profile of the Inula viscosa (L.) Aiton EtOAc extract was also investigated using HPLC-DAD/ESI-MS analysis, whereas the volatile composition was elucidated by GC-MS. The chemical analysis resulted in the detection of twenty-one polyphenolic compounds, whereas the volatile profile highlighted the occurrence of forty-eight different compounds. Inula viscosa (L.) Aiton presented values as high as 87.2 ± 0.50 mg GAE/g and 78.6 ± 0.55mg CE/g, for gallic acid and catechin, respectively. The EtOAc extract exhibited the higher antioxidant activity compared to methanol and chloroform extracts in different tests with (IC50 = 0.6 ± 0.03 µg/mL; IC50 = 8.6 ± 0.08 µg/mL; 634.8 mg ± 1.45 AAE/g extract) in DPPH, ABTS and FRAP tests. Moreover, Inula viscosa (L.) Aiton leaves did show an important inhibitory effect against α-amylase and α-glucosidase. On the basis of the results achieved, such a species represents a promising traditional medicine, thanks to its remarkable content of functional bioactive compounds, thus opening new prospects for research and innovative phytopharmaceuticals developments.  相似文献   

13.
The 2-amino-5-(3/4-fluorostyryl)acetophenones were prepared and reacted with benzaldehyde derivatives to afford the corresponding 5-styryl-2-aminochalcone hybrids. The trans geometry of the styryl and α,β-unsaturated carbonyl arms, and the presence of NHO intramolecular hydrogen bond were validated using 1H-NMR and X-ray data. The 2-amino-5-styrylacetophenones and their 5-styryl-2-aminochalcone derivatives were screened in vitro for their capability to inhibit α-glucosidase and/or α-amylase activities. Their antioxidant properties were evaluated in vitro through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) free radical scavenging assays. Kinetic studies of the most active derivatives from each series against α-glucosidase and/or α-amylase activities have been performed supported by molecular docking studies to determine plausible protein–ligand interactions on a molecular level. The key aspects of the pharmacokinetics of these compounds, i.e., absorption, distribution, metabolism, and excretion have also been simulated at theoretical level. The most active compounds from each series, namely, 2a and 3e, were evaluated for cytotoxicity against the normal monkey kidney cells (Vero cells) and the adenocarcinomic human epithelial (A549) cell line to establish their safety profile at least in vitro.  相似文献   

14.
The inhibition of α-glucosidase is a clinical strategy for the treatment of type 2 diabetes mellitus (T2DM), and many natural plant ingredients have been reported to be effective in alleviating hyperglycemia by inhibiting α-glucosidase. In this study, the α-glucosidase inhibitory activity of fisetin extracted from Cotinus coggygria Scop. was evaluated in vitro. The results showed that fisetin exhibited strong inhibitory activity with an IC50 value of 4.099 × 10−4 mM. Enzyme kinetic analysis revealed that fisetin is a non-competitive inhibitor of α-glucosidase, with an inhibition constant value of 0.01065 ± 0.003255 mM. Moreover, fluorescence spectrometric measurements indicated the presence of only one binding site between fisetin and α-glucosidase, with a binding constant (lgKa) of 5.896 L·mol−1. Further molecular docking studies were performed to evaluate the interaction of fisetin with several residues close to the inactive site of α-glucosidase. These studies showed that the structure of the complex was maintained by Pi-Sigma and Pi-Pi stacked interactions. These findings illustrate that fisetin extracted from Cotinus coggygria Scop. is a promising therapeutic agent for the treatment of T2DM.  相似文献   

15.
Natural products continue to provide inspiring moieties for the treatment of various diseases. In this regard, investigation of wild plants, which have not been previously explored, is a promising strategy for reaching medicinally useful drugs. The present study aims to investigate the antidiabetic potential of nine Amaranthaceae plants: Agathophora alopecuroides, Anabasis lachnantha, Atriplex leucoclada, Cornulaca aucheri, Halothamnus bottae, Halothamnus iraqensis, Salicornia persia, Salsola arabica, and Salsola villosa, growing in the Qassim area, the Kingdom of Saudi Arabia. The antidiabetic activity of the hydroalcoholic extracts was assessed using in vitro testing of α-glucosidase and α-amylase inhibitory effects. Among the nine tested extracts, A. alopecuroides extract (AAE) displayed potent inhibitory activity against α-glucosidase enzyme with IC50 117.9 µg/mL noting better activity than Acarbose (IC50 191.4 µg/mL). Furthermore, AAE displayed the highest α- amylase inhibitory activity among the nine tested extracts, with IC50 90.9 µg/mL. Based upon in vitro testing results, the antidiabetic activity of the two doses (100 and 200 mg/kg) of AAE was studied in normoglycemic and streptozotocin (STZ)-induced diabetic mice. The effects of the extract on body weight, food and water intakes, random blood glucose level (RBGL), fasting blood glucose level (FBGL), insulin, total cholesterol, and triglycerides levels were investigated. Results indicated that oral administration of the two doses of AAE showed a significant dose-dependent increase (p < 0.05) in the body weight and serum insulin level, as well as a significant decrease in food and water intake, RBGL, FBGL, total cholesterol, and triglyceride levels, in STZ-induced diabetic mice, compared with the diabetic control group. Meanwhile, no significant differences of both extract doses were observed in normoglycemic mice when compared with normal control animals. This study revealed a promising antidiabetic activity of the wild plant A. alopecuroides.  相似文献   

16.
The present paper reports the determination of the activation energies and the optimum temperatures of starch hydrolysis by porcine pancreas α-amylase. The parameters were estimated based on the literature data on the activity curves versus temperature for starch hydrolysis by α-amylase from porcine pancreas. It was assumed that both the hydrolysis reaction process and the deactivation process of α-amylase were first-order reactions by the enzyme concentration. A mathematical model describing the effect of temperature on porcine pancreas α-amylase activity was used. The determine deactivation energies Ea were from 19.82 ± 7.22 kJ/mol to 128.80 ± 9.27 kJ/mol, the obtained optimum temperatures Topt were in the range from 311.06 ± 1.10 K to 326.52 ± 1.75 K. In turn, the values of deactivation energies Ed has been noted in the range from 123.57 ± 14.17 kJ/mol to 209.37 ± 5.17 kJ/mol. The present study is related to the starch hydrolysis by α-amylase. In the industry, the obtained results the values Ea, Ed, Topt can be used to design and optimize starch hydrolysis by α-amylase porcine pancreas. The obtained results might also find application in research on the pharmaceutical preparations used to treat pancreatic insufficiency or prognosis of pancreatic cancer.  相似文献   

17.
α-Glucosidase inhibitors (AGIs) are used as medicines for the treatment of diabetes mellitus. The α-Glucosidase enzyme is present in the small intestine and is responsible for the breakdown of carbohydrates into sugars. The process results in an increase in blood sugar levels. AGIs slow down the digestion of carbohydrates that is helpful in controlling the sugar levels in the blood after meals. Among heterocyclic compounds, benzimidazole moiety is recognized as a potent bioactive scaffold for its wide range of biologically active derivatives. The aim of this study is to explore the α-glucosidase inhibition ability of benzimidazolium salts. In this study, two novel series of benzimidazolium salts, i.e., 1-benzyl-3-{2-(substituted) amino-2-oxoethyl}-1H-benzo[d]imidazol-3-ium bromide 9a–m and 1-benzyl-3-{2-substituted) amino-2-oxoethyl}-2-methyl-1H-benzo[d] imidazol-3-ium bromide 10a–m were screened for their in vitro α-glucosidase inhibitory potential. These compounds were synthesized through a multistep procedure and were characterized by 1H-NMR, 13C-NMR, and EI-MS techniques. Compound 10d was identified as the potent α-glucosidase inhibitor among the series with an IC50 value of 14 ± 0.013 μM, which is 4-fold higher than the standard drug, acarbose. In addition, compounds 10a, 10e, 10h, 10g, 10k, 10l, and 10m also exhibited pronounced potential for α-glucosidase inhibition with IC50 value ranging from 15 ± 0.037 to 32.27 ± 0.050 µM when compared with the reference drug acarbose (IC50 = 58.8 ± 0.12 μM). A molecular docking study was performed to rationalize the binding interactions of potent inhibitors with the active site of the α-glucosidase enzyme.  相似文献   

18.
Opuntia dillenii Ker Gawl. is one of the medicinal plants used for the prevention and treatment of diabetes mellitus (DM) in Morocco. This study aims to investigate the antihyperglycemic effect of Opuntia dillenii seed oil (ODSO), its mechanism of action, and any hypoglycemic risk and toxic effects. The antihyperglycemic effect was assessed using the OGTT test in normal and streptozotocin (STZ)-diabetic rats. The mechanisms of action were explored by studying the effect of ODSO on the intestinal absorption of d-glucose using the intestinal in situ single-pass perfusion technique. An Ussing chamber was used to explore the effects of ODSO on intestinal sodium-glucose cotransporter 1 (SGLT1). Additionally, ODSO’s effect on carbohydrate degrading enzymes, pancreatic α-amylase, and intestinal α-glucosidase was evaluated in vitro and in vivo using STZ-diabetic rats. The acute toxicity test on mice was performed, along with a single-dose hypoglycemic effect test. The results showed that ODSO significantly attenuated the postprandial hyperglycemia in normal and STZ-diabetic rats. Indeed, ODSO significantly decreased the intestinal d-glucose absorption in situ. The ex vivo test (Ussing chamber) showed that the ODSO significantly blocks the SGLT1 (IC50 = 60.24 µg/mL). Moreover, ODSO indu\ced a significant inhibition of intestinal α-glucosidase (IC50 = 278 ± 0.01 µg/mL) and pancreatic α-amylase (IC50 = 0.81 ± 0.09 mg/mL) in vitro. A significant decrease of postprandial hyperglycemia was observed in sucrose/starch-loaded normal and STZ-diabetic ODSO-treated rats. On the other hand, ODSO had no risk of hypoglycemia on the basal glucose levels in normal rats. Therefore, no toxic effect was observed in ODSO-treated mice up to 7 mL/kg. The results of this study suggest that ODSO could be suitable as an antidiabetic functional food.  相似文献   

19.
Our previous study found that desmethylxanthohumol (1) inhibited α-glucosidase in vitro. Recently, further investigations revealed that dehydrocyclodesmethylxanthohumol (2) and its dimer analogue rottlerone (3) exhibited more potent α-glucosidase inhibitory activity than 1. The aim of this study was to synthesize a series of rottlerone analogues and evaluate their α-glucosidase and DPP-4 dual inhibitory activity. The results showed that compounds 4d and 5d irreversibly and potently inhibited α-glucosidase (IC50 = 0.22 and 0.12 μM) and moderately inhibited DPP-4 (IC50 = 23.59 and 26.19 μM), respectively. In addition, compounds 4d and 5d significantly promoted glucose consumption, with the activity of 5d at 0.2 μM being comparable to that of metformin at a concentration of 1 mM.  相似文献   

20.
Diabetes mellitus is a major health problem globally. The management of carbohydrate digestion provides an alternative treatment. Flavonoids constitute the largest group of polyphenolic compounds, produced by plants widely consumed as food and/or used for therapeutic purposes. As such, isoxazoles have attracted the attention of medicinal chemists by dint of their considerable bioactivity. Thus, the main goal of this work was to discover new hybrid molecules with properties of both flavonoids and isoxazoles in order to control carbohydrate digestion. Moreover, the trifluoromethyl group is a key entity in drug development, due to its strong lipophilicity and metabolic stability. Therefore, the present work describes the condensation of a previously synthesized trifluoromethylated flavonol with different aryl nitrile oxides, affording 13 hybrid molecules indicated as trifluoromethylated flavonoid-based isoxazoles. The structures of the obtained compounds were deduced from by 1H NMR, 13C NMR, and HRMS analysis. The 15 newly synthesized compounds inhibited the activity of α-amylase with an efficacy ranging from 64.5 ± 0.7% to 94.7 ± 1.2% at a concentration of 50 μM, and with IC50 values of 12.6 ± 0.2 μM–27.6 ± 1.1 μM. The most effective compounds in terms of efficacy and potency were 3b, 3h, 3j, and 3m. Among the new trifluoromethylated flavonoid-based isoxazoles, the compound 3b was the most effective inhibitor of α-amylase activity (PI = 94.7 ± 1.2% at 50 μM), with a potency (IC50 = 12.6 ± 0.2 μM) similar to that of the positive control acarbose (IC50 = 12.4 ± 0.1 μM). The study of the structure–activity relationship based on the molecular docking analysis showed a low binding energy, a correct mode of interaction in the active pocket of the target enzyme, and an ability to interact with the key residues of glycosidic cleavage (GLU-230 and ASP-206), explaining the inhibitory effects of α-amylase established by several derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号