首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary: A kind of novel dibromocarbazole monomer bearing three alkyl chains was prepared. Two strategies were developed to improve the solubility and molecular weight of carbazole polymers. One was the polymerization of N‐octyl‐2,7‐bis(4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl)carbazole with the alkylated dibromocarbazole. Another one was the polymerization of N‐octyl‐2,7‐bis(4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl)carbazole with N‐octyl‐3,6‐dibromocarbazole. All the polymerizations were carried out under palladium‐catalyzed Suzuki polycondensation (SPC) conditions. Through using carbazole monomer bearing three alkyl chains to polymerize, we have successfully boosted the number‐average molecular weight of 2,7‐linked carbazole polymers from not more than 5 to 67 kDa. The high‐molecular‐weight polymers were obtained in high yields and displayed good solubility in common organic solvents. Their optical, electrochemical, and thermal properties were also reported.

Preparation of carbazole polymers by Suzuki polycondensation.  相似文献   


2.
Novel meso‐ or β‐derivatized porphyrins with a carboxyl group have been designed and synthesized for use as sensitizers in dye‐sensitized solar cells (DSSCs). The position and nature of a bridge connecting the porphyrin ring and carboxylic acid group show significant influences on the spectral, electrochemical, and photovoltaic properties of these sensitizers. Absorption spectra of porphyrins with a phenylethynyl bridge show that both Soret and Q bands are red‐shifted with respect to those of porphyrin 6 . This phenomenon is more pronounced for porphyrins 3 and 4 , which have a π‐conjugated electron‐donating group at the meso position opposite the anchoring group. Upon introduction of an ethynylene group at the meso position, the potential at the first oxidation alters only slightly whereas that for the first reduction is significantly shifted to the positive, thus indicating a decreased HOMO–LUMO gap. Quantum‐chemical (DFT) results support the spectroelectrochemical data for a delocalization of charge between the porphyrin ring and the amino group in the first oxidative state of diarylamino‐substituted porphyrin 5 , which exhibits the best photovoltaic performance among all the porphyrins under investigation. From a comparison of the cell performance based on the same TiO2 films, the devices made of porphyrin 5 coadsorbed with chenodeoxycholic acid (CDCA) on TiO2 in ratios [ 5 ]/[CDCA]=1:1 and 1:2 have efficiencies of power conversion similar to that of an N3 ‐based DSSC, which makes this green dye a promising candidate for colorful DSSC applications.  相似文献   

3.
Once around the block : Incorporation of a rigid hydrogen‐bonding benzamide unit, placed at the interface between two polymer blocks, in poly(ethylene glycol) (PEG)–(thio)urea–poly(L ‐lactide) (PLLA) block copolymers transforms the morphology of the block copolymers, from spherical micelles, as formed by PEG‐PLLA diblock copolymers, into nanotubes in solution.

  相似文献   


4.
For the synthesis of aromatic polyesters with defined molecular weights and narrow molecular weight distributions (MWDs), we investigated the chain‐growth polycondensation of active amide derivatives of 4‐hydroxybenzoic acid, 1a and 1b , having an octyl or 4,7‐dioxaoctyl side chain, respectively. To suppress the transesterification of the polymer backbone with the monomer, the polymerization of 1 was carried out in tetrahydrofuran (THF) at −30 °C in the presence of initiator 2 and Et3SiH/CsF/18‐crown‐6, which generated a hydride ion as a base in situ. The number‐average molecular weight (Mn) of poly 1a was controlled, and narrow MWDs were maintained, until the [ 1a ]0/[ 2 ]0 feed ratio was 14.3 (Mn ≤ 3500), whereas that of poly 1b was controlled until the feed ratio was 30 (Mn ≤ 7250). The difference stemmed from the higher solubility of poly 1b in THF. This chain‐growth polycondensation was applied to the synthesis of a diblock copolyester of 1a and 1b of a defined architecture. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4109–4117, 2005  相似文献   

5.
Herein the reactivity of the enzyme α‐chymotrypsin in the confinement of polystyrene‐block‐poly(acrylic acid) (PS‐b‐PAA) vesicles was investigated. Enzyme and substrate molecules were encapsulated in PS‐b‐PAA vesicles with internal diameters ranging from 26 nm to 165 nm during the formation of the vesicles. While the loading efficiencies of enzyme and substrate molecules were practically identical for vesicles of identical size, they were found to increase with decreasing vesicle size. The kinetics of the α‐chymotrypsin catalyzed hydrolysis of N‐succinyl‐Ala‐Ala‐Phe‐7‐amido‐4‐methylcoumarin (AMC) was evaluated following the increase of the absorption of the product 7‐amino‐4‐methylcoumarin by UV/Vis spectroscopy. The values of the catalytic turnover number obtained for reactions inside vesicles with different sizes showed an increase of up to fourteen times compared to the bulk value with decreasing vesicle volume, while the values of the Michaelis–Menten constant decreased, respectively. This increase in reactivity of α‐chymotrypsin is attributed to the effect of vesicle–wall interactions in the finite encapsulated space, where the reagents could diffuse, leading to enhanced collision frequencies.  相似文献   

6.
Summary: We report the synthesis of well‐defined block copolymers by covalent coupling of hydroxy end‐functionalized polymers. Using the high volatility of the coupling agent phosgene as compared to the solvent, very high conversion (up to 96%) is obtained in a one‐pot reaction with as little as 10−5 moles of each of the reacting polymers, even without prior purification of the as‐received reagents. This has potential as an alternative to the currently practiced method of sequential living polymerization of constituent monomers, with the added advantage of direct knowledge and control over the length distribution of each block.

Coupling of end‐functionalized polymers using phosgene to form block copolymers of controlled composition.  相似文献   


7.
Nanoparticles of the spin‐crossover coordination polymer [FeL(bipy)]n were synthesized by confined crystallization within the core of polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) diblock copolymer micelles. The 4VP units in the micellar core act as coordination sites for the Fe complex. In the bulk material, the spin‐crossover nanoparticles in the core are well isolated from each other allowing thermal treatment without disintegration of their structure. During annealing above the glass transition temperature of the PS block, the transition temperature is shifted gradually to higher temperatures from the as‐synthesized product (T1/2↓=163 K and T1/2↑=170 K) to the annealed product (T1/2↓=203 K and T1/2↑=217 K) along with an increase in hysteresis width from 6 K to 14 K. Thus, the spin‐crossover properties can be shifted towards the properties of the related bulk material. The stability of the nanocomposite allows further processing, such as electrospinning from solution.  相似文献   

8.
Hybrid materials composed of phase‐separated block copolymer films and conjugated polymers of the phenylenevinylene family (PPV) are prepared. The PPV chains are embedded in vertical cylinders of nanometer diameter in the block‐copolymer films. The cylinders span continuously the whole film thickness of 70 nm. Incorporation of the PPV chains into the one‐dimensional cylinders leads to modified photoluminescence spectra and to large absorption anisotropy. The hybrid films show electroluminescence from the PPV chains in a simple light‐emitting device at minute doping concentrations, and also exhibit a factor of 19 increase in electron transport efficiency along the single PPV chains.  相似文献   

9.
A new π‐conjugated charge‐transfer‐type copolymer of electron‐donating thiophene and electron‐accepting quinoxaline was prepared by organometallic polycondensation. The polymer was soluble in organic solvents such as tetrahydrofuran, and showed a UV‐vis peak at long wavelengths of 598 nm in chloroform and 629 nm in the film. Its film exhibited a χ(3) peak in the resonance region with a χ(3) value comparable to that of regioregular head‐to‐tail poly(3‐hexylthiophene‐2,5‐diyl).

  相似文献   


10.
This work describes the syntheses, crystal structures, photophysical properties, and electro‐chemical analyses of benzo[k]fluoranthene‐based linear acenes, together with ab initio density functional theory computations on them. The molecules were prepared in generally moderate to good yields through Pd‐catalyzed cycloadditions between 1,8‐diethynylnaphthalene derivatives and aryl iodides. This protocol is simpler and more efficient than conventional methods. The scope and limitations of this reaction were examined. The structures of compounds 4 hb , 15 ac , 17 ab , 19 ac , and 24 je were determined by X‐ray analysis; they are either bent or twisted, rather than planar. The photophysical and electrochemical properties of these cycloadducts were also investigated and compared with computational predictions based on density functional theory.  相似文献   

11.
This communication details the successful synthesis of low polydispersity core cross‐linked star (CCS) polymers via DPE‐mediated polymerisation. We demonstrate the ability to produce poly(methyl methacrylate) and poly(acrylonitrile) CCS polymers that are currently inaccessible via the two most common non‐metal‐based controlled radical polymerisation techniques (NMP and RAFT polymerisations).

  相似文献   


12.
Water‐soluble cylindrical micelles with an organometallic core are formed by self‐assembly of the first polyferrocenylsilane‐block‐polyacrylate block copolymer, synthesized by anionic polymerization, in water at pH 8. A transmission electron microscopy image of the micelles is shown in the Figure.  相似文献   

13.
Summary: A novel ABC triblock copolymer with a rigid‐rod block was synthesized by atom transfer radical polymerization (ATRP). First, a poly(ethylene oxide) (PEO)‐Br macroinitiator was synthesized by esterification of PEO with 2‐bromoisobutyryl bromide, which was subsequently used in the preparation of a poly(ethylene oxide)‐block‐poly(methyl methacrylate) (PEO‐b‐PMMA) diblock copolymer by ATRP. A poly(ethylene oxide)‐block‐poly(methyl methacrylate)‐block‐poly{2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene} (PEO‐b‐PMMA‐b‐PMPCS) triblock copolymer was then synthesized by ATRP using PEO‐b‐PMMA as a macroinitiator.

ABC triblock copolymer with a rigid‐rod block.  相似文献   


14.
The coupling reactions of ethynylferrocene with trihalogenoarenes do not lead to ethynylferrocenyl arenes that are soluble enough to form the basis of a suitable construction of stiff ferrocenylethynyl arene‐cored dendrimers, which explains the previous lack of reports on stiff ferrocenyl dendrimers. However, rigid ferrocenyl‐terminated dendrimers have been synthesized from 1,3,5‐tribromo‐ and triiodobenzene through Sonogashira and Negishi reactions with 1,2,3,4,5‐pentamethyl‐1′‐ethylnylferrocene ( 1 a ), according to 1→2 connectivity. With compound 1 a , the construction of a soluble dendrimer ( 10 a ) that contained 12 ethynylpentamethylferrocenyl termini was achieved. Stiff dendrimer 10 a shows a single, reversible cyclic voltammetry (CV) wave (with adsorption), which disfavors the hopping heterogeneous electron‐transfer mechanism that is postulated for redox‐terminated dendrimers that contain flexible tethers. The selectivity of these Sonogashira reactions allows the synthesis of an arene‐cored dendron ( 2 c ) that contains both ethynylferrocenyl and 1,2,3,4,5‐pentamethyl‐ferrocenylethynyl redox groups, thus leading to the construction of a dendrimer ( 7 c ) that contains both types of differently substituted ferrocenyl groups with two well‐separated reversible CV waves. Upon selective oxidation, this mixed dendrimer ( 7 c ) leads to a class‐II mixed‐valence dendrimer, 7 c [PF6]3, as shown by Mössbauer spectroscopy, whereas oxidation of the related fully pentamethylferrocenylated dendrimer ( 7 a ) leads to the all‐ferricinium dendrimer, 7 a [PF6]6.  相似文献   

15.
Well‐defined amphiphilic block‐graft copolymers PCL‐b‐[DTC‐co‐(MTC‐mPEG)] with polyethylene glycol methyl ether pendant chains were designed and synthesized. First, monohydroxyl‐terminated macroinitiators PCL‐OH were prepared. Then, ring‐opening copolymerization of 2,2‐dimethyltrimethylene carbonate (DTC) and cyclic carbonate‐terminated PEG (MTC‐mPEG) macromonomer was carried out in the presence of the macroinitiator in bulk to give the target copolymers. All the polymers were characterized by 1H NMR and gel permeation chromatography (GPC). The polymers have unimodal molecular weight distributions and moderate polydispersity indexes. The amphiphilic block‐graft copolymers self‐assemble in water forming stable micelle solutions with a narrow size distribution.

  相似文献   


16.
Using a one‐step synthetic route for block copolymers avoids the repeated addition of monomers to the polymerization mixture, which can easily lead to contamination and, therefore, to the unwanted termination of chain growth. For this purpose, monomers ( M1 – M5 ) with different steric hindrances and different propagation rates are explored. Copolymerization of M1 (propagating rapidly) with M2 (propagating slowly), M1 with M3 (propagating extremely slowly) and M4 (propagating rapidly) with M5 (propagating slowly) yielded diblock‐like copolymers using Grubbs’ first ( G1 ) or third generation catalyst ( G3 ). The monomer consumption was followed by 1H NMR spectroscopy, which revealed vastly different reactivity ratios for M1 and M2 . In the case of M1 and M3 , we observed the highest difference in reactivity ratios (r1=324 and r2=0.003) ever reported for a copolymerization method. A triblock‐like copolymer was also synthesized using G3 by first allowing the consumption of the mixture of M1 and M2 and then adding M1 again. In addition, in order to measure the fast reaction rates of the G3 catalyst with M1 , we report a novel retardation technique based on an unusual reversible G3 Fischer‐carbene to G3 benzylidene/alkylidene transformation.  相似文献   

17.
18.
19.
A series of multihydroxyl (2, 4, and 8) terminated poly(ethylene glycol)s and their biodegradable, biocompatible, and branched barbell‐like (PLGA)nb‐PEG‐b‐(PLGA)n (n = 1, 2, 4) copolymers have been synthesized. The lengths of the PLGA arms were varied by controlling the molar ratio of monomers to hydroxyl groups of PEG ([LA+GA]0/[? OH]0 = 23, 45, 90). Chemical structures of synthesized barbell‐like copolymers were confirmed by both 1H and 13C‐NMR spectroscopies. Molecular weights were determined by 1H‐NMR end‐group analysis and gel permeation chromatography. The result of hydrolytic degradation indicated that the rate of degradation increased with the increase of arm numbers or with the decrease of arm lengths. The thermal properties were evaluated by using differential scanning calorimetry and a thermogravimetric analysis. The results indicated that the thermal properties of barbell‐like copolymers depended on the structural variations. The morphology of (PLGA)n‐PEG‐(PLGA)n copolymers self‐assembly films were investigated by atomic force microscope, the results indicated that the microphase separation existed in (PLGA)n‐PEG‐(PLGA)n copolymers. Because of the favorable biodegradability and biocompatibility of the PLGA and PEG, these results may therefore create new possibilities for these novel structural amphiphilic barbell‐like copolymers as potential biomaterials. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3802–3812, 2008  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号