首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 600 毫秒
1.
We measured MR images of the liver of Long-Evans Cinnamon (LEC) rats with pathologic correlation and assessed the effectiveness of MR imaging (MRI) for diagnosis of noncancerous hepatic lesions. T1- and T2-weighted images of their livers were obtained, and the dynamic and delayed studies after intravenous gadolinium injection were also performed. Cholangiofibrosis showed low signal intensity on T1-weighted images and high signal intensity on T2-weighted images. The T2 relaxation time of cholangiofibrosis was significantly prolonged (p < .01), and the signal intensity ratio of this lesion to muscle on T1-weighted images was significantly lower than that of normal liver parenchyma to muscle (p < .01). The lesion was enhanced immediately after gadolinium injection and the enhancement was prolonged. Among three cases of peliosis hepatis identified, one showed heterogeneous intensities on both T1- and T2-weighted images and the other two showed similar intensity pattern to cholangiofibrosis. The characteristic MR appearance of cholangiofibrosis may be useful to distinguish it from hepatocellular carcinoma (HCC).  相似文献   

2.
《Magnetic resonance imaging》1997,15(9):1095-1098
We describe magnetic resonance findings in three patients with small bowel intussusception from different etiologies including idiopathic, adenomatous polyps, and hamartomatous polyps. Magnetic resonance findings showed a bowel-within-bowel appearance in two patients and a coiled-spring appearance in one patient. These findings were best shown on T2-weighted images, and clear definition was present on breathing independent T2-weighted images using half fourier acquisition snap shot turbo spin echo T2-weighted images.  相似文献   

3.
To assess the influence of Mangafodipir Trisodium on the imaging properties of abdominal organs when using T1-weighted gradient-echo (GE) and T2-weighted turbo spin-echo (TSE) sequences, thirty patients with focal lesions in the liver were examined at a field strength of 1.5 T before and after intravenous administration of Mangafodipir Trisodium (dose: 5 μmol/kg of body weight).Administration of Mangafodipir Trisodium led to a significant increase in the signal intensity of the liver tissue (p < 0.001), the spleen (p < 0.01), the pancreas (p < 0.001), and the kidneys (p < 0.001) in the T1-weighted GE sequence, while there was no relevant enhancement in fatty tissue and the musculature. In the T2-weighted turbo spin-echo sequence, there was no relevant change in the signal following administration of a contrast agent. The contrast-to-noise ratio (C/N) between the lesions and the liver tissue increased significantly in the post-contrast T1-weighted GE sequence (p < 0.001), while there was no change in the contrast-to-noise ratio in the post-contrast T2-weighted turbo spin-echo sequence. The contrast-to-noise ratio of the plain T2-weighted TSE sequence was significantly higher than that in the post-contrast T1-weighted GE sequence (p < 0.001). Although Mangafodipir Trisodium was primarily developed as a hepatobiliary contrast agent for demonstration and differentiation of liver lesions, it also affects the signal levels in the pancreas, spleen, and kidneys in the T1-weighted image. Awareness of this effect on the extrahepatic tissue makes it easier to interpret pathological findings in magnetic resonance imaging (MRI) of the abdomen.  相似文献   

4.
Gastric leiomyoblastoma is a rare entity. In this report, we describe the magnetic resonance (MR) appearance of a recurrent gastric leiomyoblastoma 14 years after initial presentation. This tumor was heterogeneous and moderately low signal intensity on T1-weighted images and heterogeneous and moderately high signal intensity on T2-weighted images. The tumor also contained foci of low signal intensity on the post gadolinium images, consistent with areas of necrosis. The mass enhanced mildly and increased in enhancement on the delayed images, consistent with a hypovascular mass. Multiple liver metastases were noted. Magnetic resonance findings were confirmed with surgical specimens.  相似文献   

5.
The purpose of this study was to evaluate the appearance of infectious cholangitis on MRI. The MR images of 13 patients (9 women, 4 men; age range, 14-79 years) with clinically confirmed infectious cholangitis, who represent our complete 9.5 year experience with this entity, were retrospectively evaluated. All MR studies were performed at 1.5 T and included: in-phase and out-of-phase T(1)-weighted spoiled gradient echo (SGE), T(2)-weighted fat-suppressed echo train spin echo, single shot T(2)-weighted sequences, and serial postgadolinium T(1)-weighted SGE sequences without and with fat-suppression. The biliary ductal system was evaluated regarding presence of dilatation, stenosis, wall irregularities, wall thickening, and gadolinium enhancement of duct walls. The liver parenchyma was evaluated regarding focal signal abnormalities on precontrast and serial postgadolinium images. Biliary ductal dilatation was observed in 100% of patients. Mild to moderate thickening of bile duct walls combined with increased enhancement on postgadolinium images was observed in 92% of patients. The liver parenchyma showed periportal or wedge-shaped areas of hyperintense signal on T(2)-weighted images in 69% of patients. On T(1)-weighted images, 54% of patients showed areas of hypointense signal and 15% of patients showed wedge-shaped hyperintense areas. Areas with increased enhancement on immediate postgadolinium SGE were observed in 58% of patients, and in 42% of patients increased enhancement persisted on 2 min postgadolinium fat-suppressed images. Distinctive MRI findings on pre- and postgadolinium images are appreciated for infectious cholangitis.  相似文献   

6.

Background and Purpose

Fluid-sensitive MR imaging in postoperative evaluation is important, however, metallic artifacts is inevitable. The purpose is to investigate the feasibility of fat-saturated slice encoding for metal artifact correction (SEMAC)-corrected T2-weighted magnetic resonance (MR) at 3T in patients with spinal prostheses.

Methods

Following institutional review board approval, 27 SEMAC-encoded spinal MRs between September 2012 and October 2013 in patients with spinal metallic prostheses were analyzed. The MR images were scanned on a 3T MR system including SEMAC-corrected and uncorrected fast spin echo (FSE) T2-weighted MR images with fat-saturation. Two musculoskeletal radiologists compared the image sets and qualitatively analyzed the images using a five-point scale in terms of artifact reduction around the prosthesis, visualization of the prosthesis and pedicle, and intervertebral neural foramina. Quantitative assessments were performed by calculating the ratio of signal intensity from the fixated vertebra and that from upper level vertebra. For statistical analyses, paired t-test was used.

Results

Fat-saturated SEMAC-corrected T2-weighted MR images enabled significantly improved metallic artifact reduction (P < 0.05). Quantitative evaluation of the signal intensity ratio of screw-fixated vertebra and upper level vertebra showed a significantly lower ratio on fat-saturated SEMAC images (P < 0.05), however, the high signal intensity of signal pile-up could be not completely corrected.

Conclusion

SEMAC correction in fat-suppressed T2-weighted MR images can overcome the signal loss of metallic artifacts and provide improved delineation of the pedicle screw and peri-prosthetic region. Signal pile-up, however, could not be corrected completely, therefore readers should be cautious in the evaluation of marrow around the prosthesis.  相似文献   

7.
The objective of this study was to determine correlation between structural anatomy and surface coil spin-echo MR imaging of the rat kidney and the effect of hydration state on MR signal intensities of the cortex and medulla. Twelve rats were studied in a pilot study with a 3-inch surface coil in a 1.5 T magnet under five different states of hydration. Serum and urine osmolality measurements were obtained immediately prior to each scan. Signal intensity measurements were made from both T1- and T2-weighted images of the cortex and medulla of both kidneys in each state of hydration. Gross and histological anatomy of the rat kidneys was correlated with the MR images. Four distinct layers were detected in vivo on MRI images of the rat kidney; these correlated with the histological layers. T1-weighted cortico-medullary differentiation was most pronounced at 48 h dehydration; T2 cortico-medullary differentiation was greatest at 72 h of dehydration. We concluded that different parts of the mammalian nephron can be identified by MR imaging and that cortico-medullary differentiation is affected by the hydration state of the animal.  相似文献   

8.
The purpose of this study was to describe the magnetic resonance imaging (MRI) appearance of hepatic alveolar echinococcosis (HAE) on T(1)-weighted, T(2)-weighted and postgadolinium images. A total of 13 lesions were demonstrated in 13 patients. All patients underwent MR examination at 1 T imager. MR examinations included precontrast T(1)-weighted breathing averaged spin echo (SE), breath-hold spoiled gradient echo, T(2)-weighted TSE sequences with and without fat suppression, and T(1)-weighted breath-hold spoiled gradient echo (SGE) sequence following i.v. after gadolinium administration. All lesions were confirmed with histopathology. HAE hepatic lesions revealed geographic patterns of variable signal intensities on noncontrast T(1)- and T(2)-weighted images. Slightly hyperintense, iso- and hypointense signal on T(1)-weighted images corresponded to calcified regions, which appeared hypo-isointense signal on T(2)-weighted images. Necrotic areas were hypointense signal on T(1)-weighted and hyperintense signal on T(2)-weighted images. On postgadolinium images, lesions did not reveal enhancement. Dilatation of intrahepatic bile ducts distal to HAE abscesses were observed in five patients and portal vein invasion or compression was observed in four patients, lobar atrophy of the liver was coexistent finding in cases with portal vein compression. The MRI appearance of HAE abscesses included large irregularly marginated masses with heterogenous signal on T(1)- and T(2)-weighted images and lack of enhancement with gadolinium.  相似文献   

9.
The purpose of this study was to correlate the MRI features of the anal canal with histologic findings. T1- and T2-weighted MR images of nine anal canals were obtained after fixation in 10% formalin. In three specimens, imaging was repeated after removal of histologic layers with a dissecting microscope. Corresponding histologic slices were stained with hematoxylin-eosin, Masson trichrome, and periodic acid-Schiff. Four layers were visualized on T2-weighted images. An inner layer of high signal intensity and a second layer of low signal intensity corresponded to the mucosa as well as mucous secretions and to the submucosa. The high signal intensity layer vanished at the distal part of the anal canal in accordance with the lack of mucus-secreting epithelium below the level of the dentate line. A third layer of intermediate signal intensity corresponded to the internal sphincter. A fourth layer of low signal intensity corresponded to the longitudinal muscle and external sphincter. T2-weighted MRI is capable of showing the internal architecture of the wall of the anal canal. In particular, the internal sphincter can be differentiated from the external sphincter and longitudinal muscle.  相似文献   

10.
Aim: This feasibility study explores relative myocardial perfusion characterization with an investigational T2/T21 contrast agent. Methods: Dysprosium-DTPA bis (methylamide) was administered peripherally in six patients with thallium defects. Rest and stress multi-section, gated, T2-weighted images were acquired with a 1.5 T echo-planar imager. Change in transverse relaxation rate was calculated in four segments for each subject. Results: Magnetic resonance (MR) identified five of five instances of ischemia or infarction, at a dose of agent (0.25 mmol/kg) that was comparable to that currently used with clinically approved gadolinium agents. Injection at twice this dose resulted in saturation of the signal change, and the one ischemic segment corresponding to the higher dose was not identified by MR. MR was negative in two segments which, on final diagnosis, were determined to manifest thallium attenuation artifact. Conclusion: MR perfusion imaging with high susceptibility agents has the potential to characterize myocardial perfusion deficits.  相似文献   

11.
Sterile, chemical and bacterial abscesses were induced in the paraspinal muscles of 16 rats before obtaining magnetic resonance (MR) images using a 0.35-T resistive system. Abscess intensity, T1 and T2 values were recorded before and after the intravenous administration of Gd-DTPA (0.2 mmol/kg). The MR appearances of the abscesses were correlated with histologic sections. Both sterile and bacterial abscess were detected on MR images without the use of contrast medium, particularly on the T2-weighted spin echo sequence (TE/TR 56/2000 ms). However, the inflammatory zones of abscesses markedly enhanced in intensity with a corresponding decrease in T1 values after the administration of Gd-DTPA (TE/TR 28/500 ms). A clear distinction between the necrotic center and the cellular periphery of each abscesses was evident only after contrast enhancement (TE/TR 28/500 ms). Thus paramagnetic Gadolinium-DTPA was beneficial for defining the histologic components of abscesses on spin echo MR images.  相似文献   

12.
The osteochondral junction (OCJ) of the knee joint is comprised of multiple tissue components, including a portion of the deep layer cartilage, calcified cartilage, and subchondral bone. The OCJ is of increasing radiological interest as it may be relevant in the early pathogenesis of osteoarthritis (OA). Due to its short transverse relaxation, the OCJ is invisible to clinical MR sequences. The purpose of this study was to develop a fast 3D T1-weighted ultrashort echo time cones sequence with fat saturation (FS-UTE-Cones) for high resolution and high contrast imaging of the OCJ on a clinical 3T scanner. First, numerical simulations were performed to investigate how the flip angle affected the signal intensities and contrasts of both short and long T1 tissues. The results from these simulations demonstrated that higher short T1 contrast could be achieved with higher flip angle. Next, T1 relaxation was measured for the different layers of a human patellar cartilage sample, and the results showed that the deepest layer had a significantly shorter T1 value than other layers. Finally, a healthy knee joint was scanned with different flip angles and the OCJ was highlighted in the T1-weighted FS-UTE-Cones sequence using a flip angle greater than 20°. The clinical T2-weighted and proton density-weighted FSE sequences were also included for comparison, revealing a dark OCJ region. Representative T1-weighted FS-UTE-Cones images of the whole knee of a healthy volunteer showed high signal intensity bands in the OCJ regions of the patella, femur, and tibia. On the other hand, T1-weighted FS-UTE-Cones imaging of the knee joints of OA patients revealed regions with reduction or loss of these high signal intensity bands in the OCJ regions, indicating abnormal OCJ tissue composition. The proposed 3D T1-weighted FS-UTE-Cones sequence with a 3-min scan time may be very useful for demonstrating the involvement of the OCJ regions in early OA.  相似文献   

13.
Triple-negative breast cancer (TNBC), which characterized by distinct biological and clinical pathological features, has a worse prognosis because the lack of effective therapeutic targets. Breast MR is the most accurate imaging modality for diagnosis of breast cancer currently. MR imaging recognition could assist in diagnosis, pretreatment planning and prognosis evaluation of TNBC. MR findings of a larger solitary lesion, mass with smooth mass margin, high signal intensity on T2-weighted images and rim enhancement are typical MRI features associated with TNBC. Further work is necessary about the clinical application of dynamic contrast-enhanced MR imaging (DCE-MRI), DWI and MRS.  相似文献   

14.

Purpose

The purpose of this study was to describe magnetic resonance (MR) findings of focal eosinophilic liver disease using gadoxetic acid (Gd-EOB-DTPA).

Materials and Methods

Nineteen patients (M:F=14:5; age range, 26–66 years; mean age, 50 years) with 35 focal eosinophilic liver lesions were included after reviewing the medical records of 482 patients who underwent Gd-EOB-DTPA-enhanced MR imaging (MRI) on a 3.0-T unit between April 2008 and June 2009. The diagnosis of focal eosinophilic liver disease was established by means of percutaneous liver biopsy or surgery and consistent clinical findings. Two radiologists retrospectively reviewed MR images with consensus. Margin, shape and distribution of the lesions were analyzed. We also evaluated signal intensity of focal hepatic lesions on T1- and T2-weighted images and patterns of enhancement in dynamic contrast study.

Results

The mean diameter of the lesions was 1.7 cm (range, 0.7–6.1 cm). Most of the focal eosinophilic liver lesions [n=31/35 (88.6%)] had poorly defined margins. They were usually isointense or slightly hypointense [n=34/35 (97.2%)] on T1-weighted images and hyperintense [n=32/35 (91.4%)] on T2-weighted images. Dynamic study showed enhancement (rim or homogeneous) on the arterial phase [n=21/35 (60%)] and hypointensity on the late venous phase [n=31/35 (88.6%)]. All the lesions were hypointense on the hepatobiliary phase images.

Conclusion

Focal eosinophilic liver lesions tend to be hyperintense on the arterial phase and hypointense on the late venous phase during dynamic study of Gd-EOB-DTPA-enhanced MRI. Although these findings mimic other focal hepatic lesions, poorly defined margins of the lesions and peripheral eosinophilia might help distinguish focal eosinophilic liver disease from other hepatic lesions.  相似文献   

15.
To assess the feasibility of and characterize the new paramagnetic contrast agent gadolinium-BOPTA/dimeglumine (Gd-BOPTA) to detect acute myocardial infarctions with MR imaging, 24 patients (53.3 ± 8.3 yr) were examined 9.3 ± 3.6 days after a first myocardial infarction. Short-axis T1-weighted and T2-weighted MR imaging was performed at three slice levels. T1-weighted images were obtained before, immediately after, 15, 30, and 45 min after injection. Patients received either 0.05 or 0.1 mmol/kg body weight Gd-BOPTA. Images were qualitatively and quantitatively analyzed. Two patients showed no signs of infarction on T2-weighted images as opposed to contrast-enhanced T1-weighted images. Contrast-to-noise ratio was not affected by the dosage level. Signal intensity (SI) of normal to infarcted myocardium was significantly improved by both dosages (p < .0005) but a dosage of 0.05 mmol/kg produced significantly higher SI inf/norm (1.42 ± 0.07 vs. 1.34 ± 0.06, respectively, p = .015). SI of normal and infarcted myocardium enhanced immediately after administration of 0.05 mmol/kg (29.3 ± 5.1% and 53.8 ± 9.6% respectively), which decreased thereafter to 5.3 ± 4.8% and 40.2 ± 8.5% respectively, at 45 min (p < .002 for normal myocardium). SI enhancement immediately after 0.1 mmol/kg Gd-BOPTA showed no decrease within the first 45 min. Gd-BOPTA enables the detection of myocardial infarction. Optimal infarct delineation is achieved from 15 to 45 min after administration of 0.05 mmol/kg body weight Gd-BOPTA. Gd-BOPTA at 0.05 mmol/kg does improve image quality as measured by contrast-to-noise ratio and SI enhancement as compared to 0.10 mmol/kg.  相似文献   

16.
The purpose of this article is to demonstrate the application of a PC-based multiparameter full color composite display technique of MR images of 14 selected patients with neuropathology while assessing the ability of this technique to display clinically important neuroanatomic and neuropathologic tissues. Using a PC with a 386 microprocessor and full color 24-bit graphics display capabilities, custom and commercially available image-processing softwares were applied to spatially aligned multiparameter proton density, T1-weighted (with and/or without gadolinium-DTPA) and T2-weighted MR image sets obtained from 14 patients with known neuropathology to generate intensity-based color composites. Quantitative color channel applications were used to assess the ability of this technique to differentiate anatomically and pathologically confirmed tissue types into unique color regions within the full color spectrum display in each patient case. Based on the results of pathologic correlation and quantitative color imaging analysis, the application of full color composite generation techniques to multiple MR images of selected neuropathology cases represents a viable technique for displaying diagnostically relevant tissue contrast information in one color image. With this technique, it is possible to generate composites that simultaneously display uniquely color-coded neuroanatomic and neuropathologic tissue information within the context of partially natural-appearing images.  相似文献   

17.
The effect of localized radiotherapy on vertebral bone marrow was demonstrated in two patients using quantitative MRI studies with pixel-by-pixel measurement of T2 relaxation times with generation of T2 images. Conventional T1-weighted spin-echo images were obtained as well. Irradiated vertebral bone marrow was found to have longer T2 relaxation times than the neighboring nonirradiated bone marrow. These changes corresponded to the increased signal intensity on T1-weighted images and to the field of radiotherapy and were noted 2.5 to 32 mo after radiotherapy. Radiologists should be aware of the increased T2 relaxation times in irradiated bone marrow to correctly assess spinal disorders in irradiated patients. The reported T2 changes may reflect the abundance of adipose cells that proliferate in bone marrow after radiotherapy, or may indicate an additional histological change, such as bone marrow necrosis or edema. Conclusive histological proof remains to be obtained.  相似文献   

18.
Cortical activation in visual association areas known to be responsible for the perception of motion was investigated in two volunteers who viewed a projected animated cartoon periodically “run” and “frozen” during collection of echoplanar MR images. Ten axial, contiguous, 5 mm thick, T2-weighted, gradient-echo images (TE 40 ms, TR 3000 ms) depicting BOLD contrast were acquired through the occipital lobe using a GE Signa 1.5 T system with an advanced NMR operating console. Images were analysed by time series regression modelling estimating power in the MR signal at the ON-OFF frequency of motion. Highly significant activation in response to motion perception was identified in both subjects bilaterally in area V5.  相似文献   

19.
In the present study an automatic algorithm for detection and contouring of multiple sclerosis (MS) lesions in brain magnetic resonance (MR) images is introduced. This algorithm automatically detects MS lesions in axial proton density, T2-weighted, gadolinium enhanced, and fast fluid attenuated inversion recovery (FLAIR) brain MR images. Automated detection consists of three main stages: (1) detection and contouring of all hyperintense signal regions within the image; (2) partial elimination of false positive segments (defined herein as artifacts) by size, shape index, and anatomical location; (3) the use of an artificial neural paradigm (Back-Propagation) for final removal of artifacts by differentiating them from true MS lesions. The algorithm was applied to 45 images acquired from 14 MS patients. The algorithm’s sensitivity was 0.87 and the specificity 0.96. In 34 images, 100% of the lesions were detected. The algorithm potentially may serve as a useful preprocessing tool for quantitative MS monitoring via magnetic resonance imaging.  相似文献   

20.
The correlation between the concentration and proton relaxation of bile was studied by examining sequential changes in the MR image appearance and relaxation times of gallbladder bile during a 24-h fasting period in dogs. Bile relaxation times computed from images showed progressive shortening during the first 4–8 h of fasting: T1 decreased from 500–900 ms to 250–400 ms and T2 from 130–190 ms to 70–100 ms at 0.15 T. Similar in vitro results at 0.47 T were obtained on aspirated bile samples. Relaxation times of gallbladder bile remained longer than those of the liver, and we conclude that in general the gallbladder will appear less intense than the liver on T1-weighted images (with short enough TE) and more intense on T2-weighted images regardless of the bile concentration. The liver/gallbladder contrast may reverse in a normal subject during fasting for pulse sequences combining both T1 and T2 effects, which may be explored for the possible visual detection of abnormal gallbladder function on an image.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号