首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas syringaepv Actinidiae (P. syringae) is a common pathogen causing plant diseases. Limoli proved that its strong pathogenicity is closely related to biofilm state. As a natural bacteriostatic agent with broad-spectrum bactericidal properties, juglone can be used as a substitute for synthetic bacteriostatic agents. To explore the antibacterial mechanism, this study was carried out to examine the inhibitory effect of juglone on cell membrane destruction, abnormal oxidative stress, DNA insertion and biofilm prevention of P. syringae. Results showed that juglone at 20 μg/mL can act against planktogenic P. syringae (107 CFU/mL). Specially, the application of juglone significantly damaged the permeability and integrity of the cell membrane of P. syringae. Additionally, juglone caused abnormal intracellular oxidative stress, and also embedded in genomic DNA, which affected the normal function of the DNA of P. syringae. In addition, environmental scanning electron microscope (ESEM) and other methods showed that juglone effectively restricted the production of extracellular polymers, and then affected the formation of the cell membrane. This study provided a possibility for the development and utilization of natural juglone in plants, especially P. syringae.  相似文献   

2.
The present study aimed to analyze the antioxidant and antimicrobial activity of anthocyanins extracted from colored wheat flour and wheat-grass juice against human pathogens. The total anthocyanin content and antioxidant potential in colored wheat flour and wheat-grass juice extracts were significantly higher than white flour and wheat-grass juice extracts. Ultra-performance liquid chromatography showed the maximum number of anthocyanin peaks in black wheat, with delphinidin-3-o-galactoside chloride, delphinidin-3-o-glucoside chloride, and cyanindin-3-o-glucoside chloride as the major contributors. Among flour extracts, maximum zones of inhibition against Staphylococcus aureus (MTCC 1934), Pseudomonas aeruginosa (MTCC 1434), Escherichia coli, and Candida albicans (MTCC 227) were produced by black flour extract, having the highest anthocyanin content. It exhibited a minimum microbicidal concentration (MMC) of 200 mg/mL against E. coli and C. albicans; and 100 and 150 mg/mL against S. aureus and P. aeruginosa, respectively. Black and purple flour extracts exhibited a minimum inhibitory concentration (MIC) of 50 mg/mL against S. aureus and P. aeruginosa. White flour extracts did not show MMC against E. coli and C. albicans. Among wheat-grass juice extracts, black wheat-grass was most effective and showed an MIC of 100–150 mg/mL against all pathogens. It exhibited an MMC of 200 mg/mL against S. aureus and P. aeruginosa. Hence, anthocyanin-rich colored wheat could be of nutraceutical importance.  相似文献   

3.
Quorum-sensing (QS) systems of Pseudomonas aeruginosa are involved in the control of biofilm formation and virulence factor production. The current study evaluated the ability of halogenated dihydropyrrol-2-ones (DHP) (Br (4a), Cl (4b), and F (4c)) and a non-halogenated version (4d) to inhibit the QS receptor proteins LasR and PqsR. The DHP molecules exhibited concentration-dependent inhibition of LasR and PqsR receptor proteins. For LasR, all compounds showed similar inhibition levels. However, compound 4a (Br) showed the highest decrease (two-fold) for PqsR, even at the lowest concentration (12.5 µg/mL). Inhibition of QS decreased pyocyanin production amongst P. aeruginosa PAO1, MH602, ATCC 25619, and two clinical isolates (DFU-53 and 364707). In the presence of DHP, P. aeruginosa ATCC 25619 showed the highest decrease in pyocyanin production, whereas clinical isolate DFU-53 showed the lowest decrease. All three halogenated DHPs also reduced biofilm formation by between 31 and 34%. The non-halogenated compound 4d exhibited complete inhibition of LasR and had some inhibition of PqsR, pyocyanin, and biofilm formation, but comparatively less than halogenated DHPs.  相似文献   

4.
5.
Antimicrobial resistance is a growing concern in public health and current research shows an important role for bacterial biofilms in recurrent or chronic infections. New strategies, therefore, are necessary to overcome antimicrobial resistance, through the development of new therapies that could alter or inhibit biofilm formation. In this sense, antibiofilm natural products are very promising. In this work, a bioprospection of antimicrobial and antibiofilm extracts from Uruguayan soil bacteria and insect gut bacteria was carried out. Extracts from extracellular broths were tested for their ability to inhibit planktonic cell growth and biofilm formation. Genomic analysis of Bacillus cereus ILBB55 was carried out. All extracts were able to inhibit the growth of, at least, one microorganism and several extracts showed MICs lower than 500 µg mL−1 against microorganisms of clinical relevance (Staphylococcus aureus, Pseudomonas aeruginosa, and Enterobacter cloacae). Among the extracts evaluated for biofilm inhibition only ILBB55, from B. cereus, was able to inhibit, S. aureus (99%) and P. aeruginosa (62%) biofilms. Genomic analysis of this strain showed gene clusters similar to other clusters that code for known antimicrobial compounds. Our study revealed that extracts from soil bacteria and insect gut bacteria, especially from B. cereus ILBB55, could be potential candidates for drug discovery to treat infectious diseases and inhibit S. aureus and P. aeruginosa biofilms.  相似文献   

6.
Homogentisic acid γ-lactone exhibited excellent anti-quorum sensing (QS) and anti-biofilm activities against Pseudomonas aeruginosa. Moreover, it suppressed the QS-dependent virulence factors in P. aeruginosa by quenching its QS signal molecules.  相似文献   

7.
This study aimed to evaluate the antibacterial activity in vitro of Salpianthus macrodontus and Azadirachta indica extracts against potentially pathogenic bacteria for Pacific white shrimp. Furthermore, the extracts with higher inhibitory activity were analyzed to identify compounds responsible for bacterial inhibition and evaluate their effect on motility and biofilm formation. S. macrodontus and A. indica extracts were prepared using methanol, acetone, and hexane by ultrasound. The minimum inhibitory concentration (MIC) of the extracts was determined against Vibrio parahaemolyticus, V. harveyi, Photobacterium damselae and P. leiognathi. The polyphenol profile of those extracts showing the highest bacterial inhibition were determined. Besides, the bacterial swimming and swarming motility and biofilm formation were determined. The highest inhibitory activity against the four pathogens was found with the acetonic extract of S. macrodontus leaf (MIC of 50 mg/mL for Vibrio spp. and 25 mg/mL for Photobacterium spp.) and the methanol extract of S. macrodontus flower (MIC of 50 mg/mL for all pathogens tested). Both extracts affected the swarming and swimming motility and the biofilm formation of the tested bacteria. The main phenolic compounds related to Vibrio bacteria inhibition were naringin, vanillic acid, and rosmarinic acid, whilst hesperidin, kaempferol pentosyl-rutinoside, and rhamnetin were related to Photobacterium bacteria inhibition.  相似文献   

8.
Here, we report the extracellular biosynthesis of silver nanoparticles (AgNPs) and determination of their antibacterial and anticancer properties. We also explore the efficacy of bioAgNPs incorporated in cellulose nanocrystals (CNCs) and alginate (Alg) for the formation of an antibacterial hydrogel film. Streptomyces sp. PBD-311B was used for the biosynthesis of AgNPs. The synthesized bioAgNPs were characterized using UV-Vis spectroscopy, TEM, XRD, and FTIR analysis. Then, the bioAgNPs’ antibacterial and anticancer properties were determined using TEMA and cytotoxicity analysis. To form the antibacterial hydrogel film, bioAgNPs were mixed with a CNC and Alg solution and further characterized using FTIR analysis and a disc diffusion test. The average size of the synthesized bioAgNPs is around 69 ± 2 nm with a spherical shape. XRD analysis confirmed the formation of silver nanocrystals. FTIR analysis showed the presence of protein capping at the bioAgNP surface and could be attributed to the extracellular protein binding to bioAgNPs. The MIC value of bioAgNPs against P. aeruginosa USM-AR2 and MRSA was 6.25 mg/mL and 3.13 mg/mL, respectively. In addition, the bioAgNPs displayed cytotoxicity effects against cancer cells (DBTRG-0.5MG and MCF-7) and showed minimal effects against normal cells (SVG-p12 and MCF-10A), conferring selective toxicity. Interestingly, the bioAgNPs still exhibited inhibition activity when incorporated into CNC/Alg, which implies that the hydrogel film has antibacterial properties. It was also found that bioAgNP-CNC/Alg displayed a minimal or slow release of bioAgNPs owing to the intermolecular interaction and the hydrogel’s properties. Overall, bioAgNP-CNC/Alg is a promising antibacterial hydrogel film that showed inhibition against the pathogenic bacteria P. aeruginosa and MRSA and its application can be further evaluated for the inhibition of cancer cells. It showed benefits for surgical resection of a tumor to avoid post-operative wound infection and tumor recurrence at the surgical site.  相似文献   

9.
In this study, three active compounds isolated from Oceanobacillus sp. XC22919 were identified as 2-methyl-N-(2′-phenylethyl) butyramide (1), 3-methyl-N-(2′-phenylethyl)-butyramide (2) and benzyl benzoate (3), and were first reported to exhibit the apparent quorum sensing inhibitory activities against C. violaceum 026 and P. aeruginosa. Compounds 13 inhibited violacein production of C. violaceum 026 by 10.5–55.7, 11.2–55.7, and 27.2%–95.7%, respectively, and inhibited pyocyanin production of P. aeruginosa by 1.7–50.8, 39.1–90.7, and 57.2%–98.7%, respectively. The azocasein-degrading proteolytic rates of P. aeruginosa were observed by 13.4–31.5, 13.4–28.8, and 11.3%–21.1%, respectively. With respect to elastase, the range of inhibition of activity of compounds 13 was 2.1–30.3, 4.2–18.2, and 8.9%–15.7%, respectively. Compounds 1 and 3 also showed a concentration-dependent attenuation in biofilm formation, with the maximum of 50.6% inhibition, and 37.7% inhibition at 100 μg/mL, respectively.  相似文献   

10.
Rhynchanthus beesianus W. W. Smith, an edible, medicinal, and ornamental plant, is mainly cultivated in China and Myanmar. The essential oil (EO) from R. beesianus rhizome has been used as an aromatic stomachic in China. The chemical composition and biological activities of EO from R. beesianus rhizome were reported for the first time. Based on gas chromatography with flame ionization or mass selective detection (GC-FID/MS) results, the major constituents of EO were 1,8-cineole (47.6%), borneol (15.0%), methyleugenol (11.2%), and bornyl formate (7.6%). For bioactivities, EO showed a significant antibacterial activity against Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Proteus vulgaris with the diameter of the inhibition zone (DIZ) (8.66–10.56 mm), minimal inhibitory concentration (MIC) (3.13–6.25 mg/mL), and minimal bactericidal concentration (MBC) (6.25–12.5 mg/mL). Moreover, EO (128 μg/mL) significantly inhibited the production of proinflammatory mediators nitric oxide (NO) (92.73 ± 1.50%) and cytokines tumor necrosis factor-α (TNF-α) (20.29 ± 0.17%) and interleukin-6 (IL-6) (61.08 ± 0.13%) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages without any cytotoxic effect. Moreover, EO exhibited significant acetylcholinesterase (AChE) inhibitory activity (the concentration of the sample that affords a 50% inhibition in the assay (IC50) = 1.03 ± 0.18 mg/mL) and moderate α-glucosidase inhibition effect (IC50 = 11.60 ± 0.25 mg/mL). Thus, the EO could be regarded as a bioactive natural product and has a high exploitation potential in the cosmetics and pharmaceutical industries.  相似文献   

11.
Natural products derived from marine sponges have exhibited bioactivity and, in some cases, serve as potent quorum sensing inhibitory agents that prevent biofilm formation and attenuate virulence factor expression by pathogenic microorganisms. In this study, the inhibitory activity of the psammaplin-type compounds, psammaplin A (1) and bisaprasin (2), isolated from the marine sponge, Aplysinella rhax, are evaluated in quorum sensing inhibitory assays based on the Pseudomonas aeruginosa PAO1 lasB-gfp(ASV) and rhlA-gfp(ASV) biosensor strains. The results indicate that psammaplin A (1) showed moderate inhibition on lasB-gfp expression, but significantly inhibited the QS-gene promoter, rhlA-gfp, with IC50 values at 14.02 μM and 4.99 μM, respectively. In contrast, bisaprasin (2) displayed significant florescence inhibition in both biosensors, PAO1 lasB-gfp and rhlA-gfp, with IC50 values at 3.53 μM and 2.41 μM, respectively. Preliminary analysis suggested the importance of the bromotyrosine and oxime functionalities for QSI activity in these molecules. In addition, psammaplin A and bisaprasin downregulated elastase expression as determined by the standard enzymatic elastase assay, although greater reduction in elastase production was observed with 1 at 50 μM and 100 μM. Furthermore, the study revealed that bisaprasin (2) reduced biofilm formation in P. aeruginosa.  相似文献   

12.
One of the main global problems that affect human health is the development of bacterial resistance to different drugs. As a result, the growing number of multidrug-resistant pathogens has contributed to an increase in resistant infections and represents a public health problem. The present work seeks to investigate the chemical composition and antibacterial activity of the essential oil of Syzygium cumini leaves. To identify its chemical composition, gas chromatography coupled to mass spectrometry was used. The antibacterial activity test was performed with the standard strains Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 25853 and Staphylococcus aureus ATCC 25923 and multidrug-resistant clinical isolates E. coli 06, P. aeruginosa 24 and S. aureus 10. The minimum inhibitory concentration (MIC) was determined by serial microdilution as well as the verification of the modulating effect of the antibiotic effect. In this test, the oil was used in a subinhibitory concentration. The test reading was performed after 24 h of incubation at 37 °C. The results show that the major chemical constituent is α-pinene (53.21%). The oil showed moderate activity against E. coli ATCC 25922, with the MIC of 512 µg/mL; there was no activity against the other strains. The oil potentiated the effect of antibiotics demonstrating possible synergism when associated with gentamicin, erythromycin and norfloxacin against E. coli 06 and S. aureus 10.  相似文献   

13.
The present work reported the one-pot preparation of silver nanoparticles doped with graphene oxide (Ag@GO), using glucose as an eco-friendly reducing agent. The effects of synthesis conditions on the introduction of AgNPs onto graphene oxide sheets were confirmed by modern analytical techniques and antibacterial assays. Results showed that the Ag@GO-4 sample prepared with glucose:AgNO3:GO mass ratio of 1:1:1 at 60 °C for 60 min exhibited an appropriate one for further studies with AgNPs sizing of 16.66 ± 3.73 nm. The Ag@GO-4 effectively inhibited the development of S. enterica, P. aeruginosa, and S. aureus with the 50 % inhibitory concentration at 14.5, 0.9, and 6.8 μg/mL, respectively. The simultaneous effects of Ag@GO concentration, pH, interaction time, annealing temperature, and bacterial density on the antibacterial activity of Ag@GO-4 were also investigated by Plackett-Burman and Box-Behnken design. The optimal values deducing for Ag@GO-4 concentration, pH, and bacterial density were 40 μg/mL, 5.5, and 5.1 × 106 CFU/mL, respectively, which could impressively reach 99.99 % of S. enterica elimination in practice. The interaction time and annealing temperature implied a negligible effect on the antibacterial activity of Ag@GO-4. All results of the present study affirmed the future use of Ag@GO not only as an efficient antibacterial agent but also potentially as a novel anti-virus method of treatment.  相似文献   

14.
The interaction between juglone at the concentration range of 10–110 µM and bovine serum albumin (BSA) or human serum albumin (HSA) at the constant concentration of 11 µM was investigated by fluorescence and UV absorption spectroscopy under physiological-like condition. Performing the experiments at different temperatures showed that the fluorescence intensity of BSA/HSA was decreased in the presence of juglone by a static quenching mechanism due to the formation of the juglone–protein complex. The binding constant for the interaction was in the order of 103 M?1, and the number of binding sites for juglone on serum albumins was determined to be equal to one. The thermodynamic parameters including enthalpy (ΔH), entropy (ΔS) and Gibb’s free energy (ΔG) changes were obtained by using the van’t Hoff equation. These results indicated that van der Waals force and hydrogen bonding were the main intermolecular forces stabilizing the complex in a spontaneous association reaction. Moreover, the interaction of BSA/HSA with juglone was verified by UV absorption spectra and molecular docking. The results of synchronous fluorescence, UV–visible and CD spectra demonstrated that the binding of juglone with BSA/HSA induces minimum conformational changes in the structure of albumins. The increased binding affinity of juglone to albumin observed in the presence of site markers (digoxin and ibuprofen) excludes IIA and IIIA sites as the binding site of juglone. This is partially in agreement with the results of molecular docking studies which suggests sub-domain IA of albumin as the binding site.  相似文献   

15.
A novel synthesis of thiazolo[2,3-b]quinazolines 4(a–e), pyrido[2′,3′:4,5]thiazolo[2,3-b]quinazolines {5(a–e), 6(a–e), and 7(a–e)}, pyrano[2′,3′:4,5]thiazolo[2,3-b]quinazolines 8(a–e), and benzo[4,5]thiazolo[2,3-b]quinazoloine9(a–e) derivatives starting from 2-(Bis-methylsulfanyl-methylene)-5,5-dimethyl-cyclohexane-1,3-dione 2 as efficient α,α dioxoketen dithioacetal is reported and the synthetic approaches of these types of compounds will provide an innovative molecular framework to the designing of new active heterocyclic compounds. In our study, we also present optimization of the synthetic method along with a biological evaluation of these newly synthesized compounds as antioxidants and antibacterial agents against the bacterial strains, like S. aureus, E. coli, and P. aeruginosa. Among all the evaluated compounds, it was found that some showed significant antioxidant activity at 10 μg/mL while the others exhibited better antibacterial activity at 100 μg/mL. The results of this study showed that compound 6(c) possessed remarkable antibacterial activity, whereas compound 9(c) exhibited the highest efficacy as an antioxidant. The structures of the new synthetic compounds were elucidated by elemental analysis, IR, 1H-NMR, and 13C-NMR.  相似文献   

16.
A new series of Fe(III), Cr(III), and La(III) mixed-ligand complexes, resulting from the interaction of 2-aminophenol with 2-hydroxy acetophenone (HL1) as primary ligand and L- histidine (L2) as a secondary ligand, has been investigated using various physicochemical studies such as elemental analyses, molar conductivity, magnetic moment, infrared, UV/Vis, 1H NMR, and mass spectroscopic techniques. The microanalytical results indicate that the mixed ligand complexes were designed in a 1:1:1 M ratio. The electronic spectral data indicated that all the synthesized complexes have an octahedral structure. The disc diffusion assay was used to determine the disc inhibition zone (IZ, mm) and minimum inhibitory concentration (MIC, g/mL) of the investigated compounds against the growth of the pathogenic bacterial strains S. aureus, E. faecalis, P. aeruginosa, Klebsiella sp., and E. coli. The MTT test was used to determine the cytotoxicity of these reported compounds against the human hepatocellular liver cancer (HEPG-2) cell lines. The molecular docking study for the compounds against the EGFR tyrosine kinase receptor (PDB code: 1 M17) was conducted to examine the interactions in protein–ligand complexes. Furthermore, the biological activity of the ligand was investigated using quantitative structure–activity relationship studies (QSAR).  相似文献   

17.
The present research aimed to enhance the pharmaceutically active compounds’ (PhACs’) productivity from Streptomyces SUK 25 in submerged fermentation using response surface methodology (RSM) as a tool for optimization. Besides, the characteristics and mechanism of PhACs against methicillin-resistant Staphylococcus aureus were determined. Further, the techno-economic analysis of PhACs production was estimated. The independent factors include the following: incubation time, pH, temperature, shaker rotation speed, the concentration of glucose, mannitol, and asparagine, although the responses were the dry weight of crude extracts, minimum inhibitory concentration, and inhibition zone and were determined by RSM. The PhACs were characterized using GC-MS and FTIR, while the mechanism of action was determined using gene ontology extracted from DNA microarray data. The results revealed that the best operating parameters for the dry mass crude extracts production were 8.20 mg/L, the minimum inhibitory concentrations (MIC) value was 8.00 µg/mL, and an inhibition zone of 17.60 mm was determined after 12 days, pH 7, temperature 28 °C, shaker rotation speed 120 rpm, 1 g glucose /L, 3 g mannitol/L, and 0.5 g asparagine/L with R2 coefficient value of 0.70. The GC-MS and FTIR spectra confirmed the presence of 21 PhACs, and several functional groups were detected. The gene ontology revealed that 485 genes were upregulated and nine genes were downregulated. The specific and annual operation cost of the production of PhACs was U.S. Dollar (U.S.D) 48.61 per 100 mg compared to U.S.D 164.3/100 mg of the market price, indicating that it is economically cheaper than that at the market price.  相似文献   

18.
Drugs have been discovered in the past mainly either by identification of active components from traditional remedies or by unpredicted discovery. A key motivation for the study of structure based virtual screening is the exploitation of such information to design targeted drugs. In this study, structure based virtual screening was used in search for putative quorum sensing inhibitors (QSI) of Pseudomonas aeruginosa. The virtual screening programme Glide version 5.5 was applied to screen 1,920 natural compounds/drugs against LasR and RhlR receptor proteins of P. aeruginosa. Based on the results of in silico docking analysis, five top ranking compounds namely rosmarinic acid, naringin, chlorogenic acid, morin and mangiferin were subjected to in vitro bioassays against laboratory strain PAO1 and two more antibiotic resistant clinical isolates, P. aeruginosa AS1 (GU447237) and P. aeruginosa AS2 (GU447238). Among the five compounds studied, except mangiferin other four compounds showed significant inhibition in the production of protease, elastase and hemolysin. Further, all the five compounds potentially inhibited the biofilm related behaviours. This interaction study provided promising ligands to inhibit the quorum sensing (QS) mediated virulence factors production in P. aeruginosa.  相似文献   

19.
In this study, we aimed to investigate the chemical components and biological activities of Musella lasiocarpa, a special flower that is edible and has functional properties. The crude methanol extract and its four fractions (petroleum ether, ethyl acetate, n-butanol, and aqueous fractions) were tested for their total antioxidant capacity, followed by their α-glucosidase, acetylcholinesterase, and xanthine oxidase inhibitory activities. Among the samples, the highest total phenolic and total flavonoid contents were found in the ethyl acetate (EtOAc) fraction (224.99 mg GAE/g DE) and crude methanol extract (187.81 mg QE/g DE), respectively. The EtOAc fraction of Musella lasiocarpa exhibited the strongest DPPH· scavenging ability, ABTS·+ scavenging ability, and α-glucosidase inhibitory activity with the IC50 values of 22.17, 12.10, and 125.66 μg/mL, respectively. The EtOAc fraction also showed the strongest ferric reducing antioxidant power (1513.89 mg FeSO4/g DE) and oxygen radical absorbance capacity ability (524.11 mg Trolox/g DE), which were higher than those of the control BHT. In contrast, the aqueous fraction demonstrated the highest acetylcholinesterase inhibitory activity (IC50 = 10.11 μg/mL), and the best xanthine oxidase inhibitory ability (IC50 = 5.23 μg/mL) was observed from the crude methanol extract as compared with allopurinol (24.85 μg/mL). The HPLC-MS/MS and GC-MS analyses further revealed an impressive arsenal of compounds, including phenolic acids, fatty acids, esters, terpenoids, and flavonoids, in the most biologically active EtOAc fraction. Taken together, this is the first report indicating the potential of Musella lasiocarpa as an excellent natural source of antioxidants with possible therapeutic, nutraceutical, and functional food applications.  相似文献   

20.
Antimicrobial resistance requires urgent efforts towards the discovery of active antimicrobials, and the development of strategies to sustainably produce them. Defensin and defensin-like antimicrobial peptides (AMPs) are increasingly gaining pharmacological interest because of their potency against pathogens. In this study, we expressed two AMPs: defensin-d2 derived from spinach, and defensin-like actifensin from Actinomyces ruminicola. Recombinant pTXB1 plasmids carrying the target genes encoding defensin-d2 and actifensin were generated by the MEGAWHOP cloning strategy. Each AMP was first expressed as a fusion protein in Escherichia coli, purified by affinity chromatography, and was thereafter assayed for antimicrobial activity against multidrug-resistant (MDR) pathogens. Approximately 985 µg/mL and 2895 µg/mL of recombinant defensin-d2 and actifensin, respectively, were recovered with high purity. An analysis by MALDI-TOF MS showed distinct peaks corresponding to molecular weights of approximately 4.1 kDa for actifensin and 5.8 kDa for defensin-d2. An in vitro antimicrobial assay showed that MDR Pseudomonas aeruginosa and Candida albicans were inhibited at minimum concentrations of 7.5 µg/mL and 23 µg/mL for recombinant defensin-d2 and actifensin, respectively. The inhibitory kinetics of the peptides revealed cidal activity within 4 h of the contact time. Furthermore, both peptides exhibited an antagonistic interaction, which could be attributed to their affinities for similar ligands, as deduced by peptide–ligand profiling. Moreover, both peptides inhibited biofilm formation, and they exhibited no resistance potential and low hemolytic activity. The peptides also possess the ability to permeate and disrupt the cell membranes of MDR P. aeruginosa and C. albicans. Therefore, recombinant actifensin and defensin-d2 exhibit broad-spectrum antimicrobial activity and have the potential to be used as therapy against MDR pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号